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Abstract

An individual-based model of the process of niche construc-
tion is presented, whereby organisms disturb the environment
experienced by their neighbours. This disturbance in local
conditions creates a niche that potentially could be filled by
another species (which would then create still more niches
and so on). The model is unique in allowing the complexity of
the organisms—measured by the number of genes they pos-
sess in order to be well adapted to their local environment—to
evolve over time, and is therefore the first model with which
it is possible to study the contribution of niche construction to
the evolution of organism complexity. Results of experiments
demonstrate that the process of niche construction does in-
deed introduce an active drive for organisms with more genes.
This is the first explicit example of a model which possesses
an intrinsic drive for the evolution of complexity.

Introduction
For more than half a century, engineers, computer scientists
and biologists have tried to recreate the dynamics of bio-
logical evolution in synthetic systems, ranging from com-
puter simulations to evolving RNA molecules in vitro. It is
a surprising fact that none of these attempts has succeeded
in producing ongoing evolutionary dynamics in which in-
novations continue to arise, or where the complexity of the
system, given any suitable measure, can be said to increase
in an unbounded fashion.

The artificial life platform Avida has recently been used to
study the evolution of complex features (Lenski et al., 2003),
but the observed increase in the complexity of organisms
arose only because a series of nine progressively more com-
plex reward functions was added to the environment. After
the organisms had evolved solutions to these functions, the
system reached a fairly stable end point.

Studies of evolution in vitro, such as Spiegelman’s and
Orgel’s experiments with evolving RNA sequences using
a viral enzyme (Orgel, 1979), have also demonstrated the
need for a better theoretical understanding of these issues.
Reflecting on Orgel’s results, Maynard Smith comments:
“In this simple and well-defined system, natural selection
does not lead to continuing change, still less to anything that

could be recognized as an increase in complexity: it leads to
a stable and rather simple end point. This raises the follow-
ing simple, and I think unanswered, question: What features
must be present in a system if it is to lead to indefinitely
continuing evolutionary change?” (Maynard Smith, 1988,
p.221, emphasis added)

The theoretical biology literature provides some suitable
starting points for answering Maynard Smith’s question.
Waddington recognised the need to develop a framework
that described the logical structure of open-ended evolution,
and published a suggestion of what such a framework might
look like (Waddington, 1969). He went as far as to call
this characterisation a new paradigm under which biologi-
cal evolution should be studied.

The overall scenario is summarised as follows: “The com-
plete paradigm must therefore include the following items:
A genetic system whose items (Qs) are not mere informa-
tion, but are algorithms or programs which produce phe-
notypes (Q

�
s). There must be a mechanism for producing

an indefinite variety of new Q
� �

s, some of which must act
in a radical way which can be described as ‘rewriting the
program.’ There must also be an indefinite number of en-
vironments, and this is assured by the fact that the evolving
phenotypes are components of environments for their own
or other species. Further, some at least of the species in the
evolving biosystem must have means of dispersal, passive or
active, which will bring them into contact with the new en-
vironments (under these circumstances, other species may
have the new environments brought to them). These envi-
ronments will not only exert selective pressure on the phe-
notypes, but will also act as items in programs, modifying
the epigenetic processes with which the Qs become worked
out into [Q

�
s].” (Waddington, 1969, p.120)1

This demonstrates that Waddington was fundamentally
interested in situations where organisms constitute part of
the environment experienced by other organisms. This leads
to niche construction, whereby the presence of one species
may introduce new niches in which other species can flour-

1The final symbol in the original text is printed as Q
�
s, but this

appears to be a typographical error.



ish (which in turn may introduce yet more niches and so on).
Waddington predicted that such a system would produce a
continually increasing number of species, and continually
increasing phenotype complexity (ibid. p.119).2

Little work has been devoted to exploring this proposal,
presumably because of the difficulties in capturing it fully
with an analytical model. One of the motivations behind the
work described here was to build a individual-based model
that complied with Waddington’s paradigm. This could then
be used to test his predictions about the evolution of com-
plexity and diversity.

In addition to the work with Avida already mentioned,
a small number of other relevant models have recently ap-
peared in the literature. Walker described a model specif-
ically based upon Waddington’s ideas of niche selection
(but not niche construction) (Walker, 1999). However, in
this case the potential niches were predefined and were not
dependent on the presence of particular species (i.e. inter-
organism interactions were not modelled). This was a seri-
ous flaw, and the results showed that it generally did not lead
to the evolution of complex organisms.

Odling-Smee and colleagues have studied the evolution-
ary consequences of niche construction using more tra-
ditional population genetic models (Laland et al., 1999;
Odling-Smee et al., 2003). They have shown that niche con-
struction is a potent evolutionary force and can lead to un-
usual dynamics. In the current context, though, a disadvan-
tage of such models is that they are only capable of describ-
ing the change in frequencies of a fixed number of genes
over time. They are unable to model the introduction of new
genes during the course of evolution, and are therefore not
ideal for studying questions relating to possible increases in
community diversity and organism complexity.

A different approach has been taken by Christensen and
colleagues, who present a model in which individuals are
described as vectors in a genotype space, and interactions
between species are described by a pre-generated interac-
tion matrix (Christensen et al., 2002). Their model produced
dynamics in which relatively stable communities of species
(which they refer to as quasievolutionary stable strategies, or
q-ESS) exist for extended periods, separated by short tran-
sition periods of hectic reorganization. Furthermore, the av-
erage duration of the q-ESS periods increased slowly over
time, in agreement to analysis of the fossil record. Despite
the many attractive features of this model, it does not include
a concept of organism complexity, and therefore cannot be
used to address questions regarding how this evolves.

Finally, Pachepsky and colleagues described a spatially-
explicit, individual-based model in which mutualistic rela-
tionships could evolve between organisms (Pachepsky et al.,

2The sentence about “rewriting the program” shows that
Waddington was also concerned with the problem of how funda-
mentally novel phenotypic traits can arise during evolution, which
is another topic of major importance to artificial life research.

2002). They found that the possibility of such relation-
ships lead to increased community diversity and stability.
In agreement to the results of (Christensen et al., 2002), the
composition of the communities tended to show periods of
stability separated by short transition periods leading to new
relatively stable states. However, the model was again not
designed to address the evolution of organism complexity.
It was also limited by the fact that mutualistic relationships
could only arise between pairs of organisms rather than more
extended ecological webs.

In the following sections, a new model is described which
has been specifically designed to study the possible conse-
quences of niche construction for the evolution of commu-
nity diversity and organism complexity. The model over-
comes many of the shortcomings of previous work in ad-
dressing these questions.

Description of the Model3
Before presenting a formal description of the model, it is
worth giving a general overview of its design. It is an
individual-based model in which the local environment ex-
perienced by an organism is expressed as an arbitrary vector
of real numbers. An organism’s behaviour, and the degree
to which it is of adaptive value in the local environment, is
abstractly modelled by requiring the organism to define a
mathematical function which should closely match this “en-
vironment vector”.4 Reproductive success is proportional
to the closeness of match over a defined subset of the vector.
The crucial part of the model is that the presence of an organ-
ism causes a perturbation in the environment vector experi-
enced by all organisms in the local neighbourhood, thereby
producing an environmental niche that potentially could be
filled by a different species. As organisms can evolve ar-
bitrarily complicated functions in order to match their envi-
ronment, the model can therefore be used to study the role of
niche construction in the evolution of organism complexity.

The formal definition of the model is as follows. Space is
represented as a discrete two dimensional grid with wrapped
boundaries in both dimensions (so the topology is toroidal).
Each grid position, or patch, is denoted Pi j, where i and j
are its spatial coordinates. A patch can contain zero or more
organisms, up to a number limited by the local density pa-
rameter TM . Each patch provides a local environment, which
is experienced by all organisms located within it. This is rep-
resented as a vector Ei j

��� E1
i j � E2

i j ���	���
� ELE

i j � , where Ek
i j is a

real number in the range � 0 � 1  . These elements Ek
i j can be

interpreted as observables or attributes of the physical en-
vironment (e.g. temperature, humidity, levels of a nutrient,
etc.). The local environment Ei j can be influenced by the

3The source code of the model is available at http://
homepages.inf.ed.ac.uk/timt/papers/ncec/

4This method of representing an environment, and the way
in which organisms generate functions to match the environment,
were inspired by and adapted from (Rocha, 2001).



presence of organisms in a local neighbourhood of patches
Pxy, where x ��� i � RN � i � RN � � y ��� j � RN � j � RN � , and
RN is the neighbourhood radius (a parameter of the model).
The details of an organism’s influence on the environment
are described later. In the absence of any organisms in the
local neighbourhood, Ei j

� EA, which represents the virgin
abiotic environment.

An organism On is defined by the triplet � Sn � Vn � Dn �
which can be interpreted as, respectively, its sensitivity to
particular environmental attributes, its preferred operating
values for those attributes, and the manner in which it alters
the environment through its behaviour. A schematic diagram
of the structure of an organism is shown in Figure 1, and of
a local collection of patches in Figure 2.

Sn is a pair � Bn � Ln � with 1 � � Bn � Ln � � LE . This specifies
that the organism is sensitive to all environmental attributes
in the range � EBn � EBn � LN � (indices on E wrap around such
that ELE � 1 � E1 and so on). This information is used in the
calculation of an organism’s fitness in a given environment,
to be described later.

Vn (the second element of On) is a vector of genes, Vn
�� G1

n � G2
n ���	���
� GCn

n � , of variable length �Vn � � Cn � 1. The
general idea is that the elements of Vn represent transforma-
tion operations that can be applied sequentially to a default
“preferences vector” PD (of length LE equal to that of an
environment vector E) in order to generate a new vector Pn
representing the organism’s preferred operating values for
each of the attributes of the environment. The larger an or-
ganism’s vector of genes Vn, the more operations are applied
to PD, and hence the more complicated the form of Pn can
become. The definition of a gene, and the way in which a
vector of genes Vn is used to generate a vector Pn which can
then be compared to the local environment vector Ei j, fol-
lows the method described in (Rocha, 2001). For reasons of
space, only a general outline of the method will be described
here; for a full description, the reader is referred to Rocha’s
paper. A gene Gx is defined by the quintuple � Fx � p � s � r��� x � .
Fx is an element of F , a small set of fuzzy set shapes each
defined over a generic interval � 0 � LF  . Similarly, � x is an
element of O, a small set of fuzzy set operations. The action
of a gene Gx on a given preferences vector Py is to apply the
fuzzy set shape Fx to Py using the fuzzy set operation � x.
The elements p, s and r of Gx provide further details of the
action, such as specifying the subset of elements of Py on
which Fx is to be applied. See (Rocha, 2001) for details. For
a given set of genes, the final form of Pn is sensitive to the
order in which the genes are applied, so even if we consider
only organisms with a given, small number of genes, a large
variety of different Pn is possible.

Dn (the final element of On) is a quadruple of the form� Fn � p � s � r � , the elements of which have the same meaning
as the corresponding elements of a gene. Dn determines
the way organism On disturbs the local environment vector
Eij. Specifically, the environment vector at a given patch Pi j
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Figure 1: Structure of an organism. Sn specifies the envi-
ronment attributes to which the organism is sensitive, and
Pn specifies its preferred values for those attributes. CDn

specifies the way in which the organism affects the local en-
vironment experienced by itself and other organisms.
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Figure 2: A local collection of patches. In this example the
local neighbourhood radius RN is 1, and all unshown patches
neighbouring this local collection are assumed to contain
no organisms. For each organism present, its environmen-
tal disturbance pattern CDn is shown. Patch 0,0 displays the
virgin abiotic environment because there are no organisms
in its neighbourhood. The environment in all other patches
has been modified by the presence of organisms.

at time t, Et
i j
� 1�

N i j
� � 1 � EA ��� n � N i j

CDn � , where N i j is
the set of organisms currently residing in all patches within
the local neighbourhood radius RN , and CDn is the fuzzy
set shape defined by Dn, given by Fn appropriately modi-
fied by p, s and r. In experiments where the model flag
ENV DIST RESTRICTED=true, s is clamped at zero for
all organisms, which limits the number of elements of CDn

which can take on nonzero values—that is, an organism can
only disturb a limited subset of environmental attributes.
This definition of Et

i j was adopted because it is additive with
respect to the members of N i j, so a given collection of or-
ganisms will always produce the same disturbance regard-
less of the order in which their effects are considered.

The fitness fn
� i � j � of an organism On in patch Pi j is

defined as fn
� i � j � � 1 � 1

Ln
� x � Bn � Ln  1

x � Bn
�Ei j

� x � � Pn
� x � �

(where Bn and Ln are the components of Sn, as described
earlier). The probability pR

n of organism On reproducing at a
given iteration of the simulation is given by pR

n
� cR fn

� i � j � ,



where cR is a parameter of the model. Each organism also
has a probability of death, pD

n , associated with it. In some ex-
periments this is kept constant, pD

n
� cD, where cD is a model

parameter, and in others it is set to pD
n
� cD � 1 � fn

� i � j �	� .
Time in the model proceeds in discrete iterations. The

top level algorithm is shown in Figure 3. The procedure
initialise sets the environment vector of each patch
to be EA, randomly generates a number of organisms (de-
termined by the initial local density parameter T0), each
of size �Vn � � 1, and places them in randomly chosen
patches. updateEnvironment updates Ei j for patch
Pi j according to the organisms currently present within
the local neighbourhood. updateOrganisms recalcu-
lates the fitness fn and reproduction probability pR

n (and,
if appropriate, the probability of death pD

n ) of each organ-
ism within a patch, according to the current form of Ei j .
killOrganismsStochastic considers each organism
On within a patch in turn, and kills it with probability pD

n .
Similarly, reproduceOrganisms makes a copy of each
organism with probability pR

n and places it in a randomly
chosen patch within a dispersal radius RD. When an or-
ganism reproduces, mutations may be introduced into the
offspring: a randomly generated new gene is inserted into
Vn with probability pM� ; a randomly selected gene in Vn is
deleted with probability pM (provided �Vn �"! 1); for each
gene in Vn, with probability pM

g # �Vn � , a randomly cho-
sen element of the gene is mutated; similarly, with prob-
ability pM

d , a randomly chosen element of Dn is mutated;
and, with probability pM

s , the value of the elements of
Sn are independently altered by either � 1, 0 or � 1. Fi-
nally, checkOvercrowding considers, for each patch,
the mean number of organisms present in each patch within
the local neighbourhood. If this exceeds the maximum lo-
cal density threshold TM, more organisms are killed from
patches in the local neighbourhood (stochastically, accord-
ing to their pD

n values) until the density returns below TM .

Experiments
Five sets of experiments were conducted in order to answer
the question: Does niche construction introduce an intrinsic
drive for the evolution of organism complexity? All exper-
iments used the standard model configuration unless other-
wise stated.5 Five experiments were conducted in each set,
which had identical configurations apart from the seed sup-
plied to the random number generator at run initialisation.

Set I was the standard trial set, using the default configu-
ration unaltered. Set II was the main control set, in which
ENV DIST ENABLED=false (i.e. the presence of organ-
isms did not affect a patch’s environment vector, so no niche

5This was: ENV SIZE=50x50, NUM ITERATIONS=5000,
RN $ 1, RD $ 2, T0 $ 0 % 1, TM $ 10, LE $ 100. EA $
PD $'& 0 % 5 ( 0 % 5 (�%)%�%�( 0 % 5 * , pM+ $ pM, $ pM

g $ pM
d $ pM

s $ 0 % 05,
cR $ 0 % 5, cD $ 0 % 1, Ln $ 20, DEATH PROB POLICY=constant,
ENV DIST ENABLED=true, ENV DIST RESTRICTED=true.

initialise

iteration = 0

while (iteration < NUM_ITERATIONS)
{

if (ENV_DISTURBANCE_ENABLED)
for each patch P; do

updateEnvironment(P)
end

endif

for each patch P; do
updateOrganisms(P)
killOrganismsStochastic(P)
reproduceOrganisms(P)

end

for each patch P; do
checkOvercrowding(P)

end

iteration = iteration + 1
}

Figure 3: The top level algorithm

construction could occur). Set III was similar to Set II, but
the abiotic environment EA was more complex (see inset of
Figure 4(f)) than the homogeneous version used in other ex-
periments. This was designed to see to what extent any dif-
ference in dynamics between Sets I and II was due to the
more complex environments present in Set I per se, rather
than to the continuous process of niche construction. In Set
IV, ENV DIST RESTRICTED=false, so organisms could
affect an unlimited number of environmental attributes. Sus-
tained evolutionary trends in this case were expected to be
less likely, as ecologies were always open to the threat of a
new species being introduced that had a devastating affect on
the environment. Finally, in Set V, an organism’s probability
of death, pD

n
� cD � 1 � fn

� i � j ��� [with cD � 0 � 5], rather than
being constant. Thus fitter organisms should tend to live
longer as well as reproduce more frequently, effectively in-
creasing the selection pressure for well-adapted organisms.

Results and Analysis
In all sets, the results obtained from each experiment of the
set were qualitatively similar. In the following discussion,
typical results from each set are highlighted.

The main results from Set I are shown in Figure 4(a)-(d).
Figure 4(a) shows that the mean number of genes �Vn � of
organisms in the population steadily grew over time, start-
ing from 1 and reaching approximately 14–15 genes after
5000 iterations. The mean age of organisms in these runs
(not shown) stayed fairly steady at about 3 iterations per or-
ganism, so 5000 iterations represents approximately 1667
generations. The overall population size (not shown) set-
tled to a level of around 21500 individuals within the first
100 iterations, and stayed at that level for the rest of the
run. The diversity of different species, where a species is
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Figure 4: (a)–(d) Set I, Run 1: (a) Evolution of mean number of genes (b) Evolution of population diversity (c) Evolution of
gene number frequencies (d) Species activity waves, (e) Set II, Run 1: Evolution of mean number of genes (f) Set III, Run 1:
Evolution of mean number of genes (inset: EA used for Set III), (g)–(h) Set V, Run 4: (g) Evolution of mean number of genes
(h) Species activity waves

defined as a collection of individuals that share exactly the
same � Sn � Vn � Dn � , also settled to a fairly constant value (of
around 9000 species), although it only settled at this value
after around 1000 iterations (Figure 4(b)). The inset of this
figure shows that even after the population level had settled
down after 100 iterations, the diversity of the system gradu-
ally increased for the next 900 iterations. However, the size
of this increase was not large. Furthermore, if we look at
the diversity of significant species (not shown), arbitrarily
defined at a given iteration as those species that had 10 or
more individuals present in the population, then the reverse
trend is seen—the diversity of these species is around 300
at iteration 1, and gradually falls to around 200 by iteration
1000, after which time it remains fairly constant.

Figure 4(c) shows the distribution of genome sizes ( �Vn � )
in the population at various points during the run. This
demonstrates that the move to longer genomes is an active
trend (McShea, 1994)—that is, it is not an artifact due to
the presence of a lower limit of genome size, but indeed the
whole population is moving towards higher genome sizes.
Figure 4(d) shows an activity wave diagram of significant
species throughout the run. Each line represents a single
species, and is defined by the cumulative count of individ-
uals of the species over time (Bedau and Brown, 1999).
The inset of this figure demonstrates that many significant
species coexist at any given time, and multiple species often
tend to die out at around the same time (shown by the cessa-
tion of multiple activity waves)—although there is always a
base level of active species that prevents the population from
collapsing when such extinctions occur.

The change in genome size over time for a run from the
control group in Set II is shown in Figure 4(e). In this case,

the mean size remains at around 1.8 genes for the duration
of the run. In addition, the frequency distribution of genome
sizes (not shown) does not change over time, but remains in
a state similar to the plot for iteration 100 in Figure 4(c) for
the duration of the run. These results demonstrate that there
is no drive, either active or passive, for increased genome
size in the situation where organisms do not cause distur-
bances in their local environment. This indicates that the
active trend observed in Set I was indeed caused by niche
construction.

In Set III, organisms again did not cause environmental
disturbances, but the abiotic environment EA was more com-
plex. In this situation, an increase in genome size was ob-
served over time (Figure 4(f)), but this tended to tail off after
reaching a level of around 7 genes. This shows that complex
environments introduce selection pressure for complex or-
ganisms (i.e. with a large number of genes). However, in
this case, the environmental complexity has been provided
extrinsically—this is similar to the situation in (Lenski et al.,
2003). In contrast, in Set I, we started with a simple en-
vironment, but the system displayed intrinsic dynamics for
generating complex organisms (and environments).

The Set IV experiments involved a situation where organ-
isms could again cause disturbances to the environment, but
this time the breadth of the disturbance was unlimited. As
expected, this tended to slow down the pace of evolution; the
mean number of genes (not shown) did rise over the course
of the runs, but more slowly than in Set I. In some runs it in-
creased steadily, reaching a value of approximately 8 genes
after 5000 iterations, whereas in other runs it seemed to peak
at around 7 genes after around 3000 iterations and remain
around that level of the rest of the run.



Perhaps the most surprising results, and the most variation
between runs in a set, came from Set V, which had a similar
configuration to Set I except that probability of death of an
organism pD

n was not constant, but rather inversely propor-
tional to fitness. In these runs, the mean number of genes
oscillated wildly throughout the run. An example is shown
in Figure 4(g). The population diversity (not shown) was
also somewhat lower then in Set I, in the region 6000–7000,
and this also oscillated more than was observed in the other
sets. However, the diversity of significant species was higher
than in Set I, in the range 300–350 throughout the course of
the run. Species activity waves were much higher than in
other sets (Figure 4(h)). These results for diversity and ac-
tivity waves are in line with the expectation that the new
method of calculating probability of death would increase
selection pressure—so the better adapted species tended to
last for longer. The behaviour of the mean genome size still
remains a little puzzling. One possibility is that because the
population tends to comprise a higher proportion of highly
adapted organisms that have been around for longer (which
is confirmed by higher mean ages and mean probabilities of
reproduction in this set), when one of these species finally
does become extinct, a larger number of other species are
likely to have depended upon it, and so the greater the im-
pact on the stability of the ecosystem. Further experiments
are underway to investigate this issue.

Discussion
Theoretical biologists have described situations in which
there may exist drives for ongoing evolution rather than sta-
sis, e.g. (Dawkins and Krebs, 1979; Van Valen, 1973), but
the model presented here is the first to explicitly demonstrate
a system with an intrinsic drive for the evolution of com-
plexity. Organism-induced perturbations in the environment
can be either beneficial or harmful to other organisms in the
model. It therefore also provides a very general representa-
tion of symbiotic relationships.

It should be emphasized that, when an organism repro-
duces, the probability of mutation for each gene in Vn is
defined as pM

g # �Vn � . So the probability of a genome being
copied with no mutations is roughly � 1 � pM

g � , regardless of
length. If the mutation rate per gene was not normalized by�Vn � , the model would soon reach the error threshold beyond
which it is impossible to reliably transmit genomes to the
next generation (Eigen and Schuster, 1977)—and this has
indeed been verified experimentally. That is, the organisms
are able to continually increase in complexity only because
we are assuming they have found a way of reliably replicat-
ing long genomes, thereby avoiding the error threshold.

In terms of complying with Waddington’s paradigm (see
Introduction), the model still falls short. It successfully cap-
tures the concept of niche construction, but misses features
such as the ability to fundamentally rewrite the genotype–
phenotype mapping, and modelling epigenetic processes.

However, the results have demonstrated that niche construc-
tion by itself is sufficient to introduce an intrinsic drive for
the evolution of organism complexity.

The question of how long this trend might continue in the
model remains unanswered—in a couple of runs in Set I
there were signs that the increase in genome length was
starting to tail off towards the end of the run. Further work
will investigate this, as well as factors that could prevent (or
at least delay) any tailing off (such as allowing organisms
to evolve different degrees of sensitivity to environmental
attributes (i.e. allowing Ln in Sn to evolve), or even allow-
ing the length of Ei j to grow to simulate the evolution of
fundamentally new types of behaviour). More work is also
required to analyse the occupancy of different niches in the
model, their stability, duration and evolution.

Finally, the environment described in the model is very
abstract. A challenge for artificial life researchers is to un-
derstand how to build real (or artificial) environments which
possess the same capacity for niche construction. The main
challenge here is to build systems in which organisms con-
stitute significant components of the environment experi-
enced by other organisms. Some suggestions for progress
in this direction are offered in (Taylor, 2004).
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