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Abstract

Karl Sims’ work25,26 on evolving body shapes and controllers for three dimensional, physically

simulated creatures generated wide interest on its publication in 1994. The purpose of this paper

is threefold: (1) to highlight a spate of recent work by a number of researchers in replicating, and

in some cases extending, Sims’ results using standard PCs (Sims’ original work was done on a

Connection Machine CM-5 parallel computer). In particular, a re-implementation of Sims’ work by

the authors will be described and discussed; (2) to illustrate how off-the-shelf physics engines can

be used in this sort of work, and also to highlight some deficiencies of these engines and pitfalls

when using them; and (3) to indicate how these recent studies stand in respect to Sims’ original

work.

Introduction

There can be few readers of this journal who are unaware of Karl Sims’ captivating work in

evolving virtual creatures in a three dimensional physically simulated environment25,26. Sims’ work

was published in 1994, yet despite the considerable interest it generated (and indeed continues
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to generate) in the artificial life, graphics and animation communities, it is remarkable how little

work has been published since then on replicating and extending his results.

There has been a reasonable amount of work on the evolution of controllers for physically

modeled creatures with fixed or parameterized morphologies1,5,12,14,19,23,24,28, along with studies

employing other adaptive techniques to automate the generation of controllers for fixed

morphology creatures27. There have also been a number of studies of various kinds of

developmental scheme for the evolution of morphology alone (i.e. without controllers) 6,9,11.

However, few studies have followed Sims’ lead in evolving both the creature’s morphology (body

shape) and its controller. Dellaert and Beer studied the development of morphology and

controllers for simple agents in discrete, two dimensional grid worlds7. Ventrella has published a

series of papers describing ongoing experiments on the evolution of morphology and controllers

for creatures in continuous, physically modeled environments29,30,31,32. However, his interest in the

ecology and co-evolution of large populations of creatures has dictated the use of somewhat

simpler morphologies and controllers than those used by Sims, and a simplified physical

environment (for example, Ventrella’s more recent models are two dimensional30,31,32).

One of the reasons why Sims’ system produced such good results was that he modeled the

physics of a three dimensional environment to a sufficiently accurate degree that objects moved

realistically when subjected to forces and torques. Hence the beautiful movements produced by

many of his evolved creatures were due just as much to the accurately modeled physical

environments as they were to the creatures’ individual controllers.

Two possible reasons why more people have not embarked upon similar research are that (a)

these sorts of evolutionary system require considerable computational power (Sims ran his

original work on a Connection Machine CM-5 parallel computer), and (b) programming the

physics of the environment such that it is sufficiently accurate yet also computationally efficient is

a considerable challenge.



However, the power of standard PCs has now reached a point where they are capable of running

evolutionary systems such as these at a tolerable speed. Also, a number of off-the-shelf physics

engines are now available (some of which are free or carry a nominal fee for academic use),

liberating artificial life researchers from the chore of programming this component

themselves8,13,21. These two factors have contributed to a welcome increase in research activity in

this area within the last couple of years. This work is summarized in Table 1. In the following

section, the authors’ own work in re-implementing Sims’ system on a PC is described, and their

experience of using an off-the-shelf physics engine for this type of work is discussed. In the

section after that, the other studies listed in Table 1 are also briefly described. The paper

concludes by relating these new studies to Sims’ original work, and by suggesting some possible

lines of future research.

Table 1: Recent Published Work with Evolving Creatures’ Morphologies and Controllers

Authors Physics

Engine

Simulation Technology

(see text for details)

Comments

Komosinski et al.15,16 Own Finite Element methods Evolved swimmers and

crawlers

Taylor, Massey MathEngine General Lagrange multiplier

constraint solver with

Baumgarte stabilization

Evolved swimmers and

crawlers

Lipson, Pollack20 Own Relaxation by energy

minimization for quasi-static

motion

Created real robots from

evolved virtual crawlers

Bongard, Paul4 MathEngine General Lagrange multiplier

constraint solver with

Baumgarte stabilization

Investigating morphological

symmetry and locomotive

efficiency of crawlers



Ray22 MathEngine General Lagrange multiplier

constraint solver with

Baumgarte stabilization

User-guided aesthetic

evolution

A re-implementation of Sims’ work using the MathEngine physics engine

We now describe our own work in this area, conducted in 1999 and early 2000. Our project was

in the first batch of a recent spate of studies to use MathEngine’s commercially available physics

engine, a version of which (SDK 1.1) is available free for academic use21. The system was

basically a re-implementation of that written by Karl Sims in 1994. The differences were more

technical than scientific: (a) we used MathEngine's physics engine, rather than code designed

specifically for the application, to provide a realistic physical environment for the creatures to live

in; and (b) we performed our experiments on mid-range PCs (mostly 400MHz Celerons) rather

than the Connection Machine parallel computer used by Sims.

One technical difference between the MathEngine physics simulation and that used by Sims is

that MathEngine employed a general Lagrange multiplier based constraint solver2 with

Baumgarte stabilization3, for modeling joints and contacts, whereas Sims used a combination of

Featherstone’s reduced coordinate approach10 for the jointed bodies, with the penalty method for

resolving contacts. Although Featherstone’s method is fast – O(N) with respect to number of

degrees of freedom – and was clearly sufficient to generate a large range of complex character

interactions for Sims, constraint solving approaches can potentially handle more challenging

simulations involving multiple contacts and loops in the creatures’ morphologies.

Another major difference is in the way we implemented the effectors to control the relative motion

of body parts. Sims’ effectors worked by applying forces directly between body parts. In contrast,

we used orientation based proportional-derivative (PD) actuators28 acting on ball and socket

joints. The input to these controllers was interpreted as a desired orientation for the joint, and the

controller would exert a torque on the joined parts to move them towards this orientation. Early



experiments indicated that the use of more sophisticated effectors such as these led to the much

more rapid evolution of useful movements.§

Most other technical details of the system's design were identical to Sims’ system, and the reader

is therefore referred to his papers for a full description25,26. Here we will only give an outline of the

design and will focus instead on the practical problems and issues we encountered when building

the system.

Each creature is built up from a genetic description in the form of a nested directed graph. The

genetic information describes both the creature's morphology and its control architecture. This

representation provides modularity to the mapping from genotype to phenotype, and naturally

leads to features such as duplication and recursion of body parts. One difference between our

work and Sims' is that we used cylinders with hemispherical ends ('sphyls'), rather than cuboids,

as the basic body parts, because collision detection can be performed much more efficiently on

sphyls. The controller was an “augmented” neural network exactly as described by Sims26.

A run was started by randomly generating a population of genotypes. Each genotype in turn was

translated into a physical creature, and then evaluated in a physically simulated environment for

its performance at a given task. We used two basic environments, sea and land. The sea

environment included a simplistic model of fluid drag (a retarding force was applied to each sphyl,
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Toolkit (version 2.0) 21 and ‘dashpots’ in Havok (version 1.3) 13. Dashpots are PDs but they can

handle much stiffer joints (allowing for greater control). FLVCs allow the user to specify an exact

relative velocity, which the solver will generate, provided that the force required to achieve it is not

in excess of a user specified limit. This is ideal for modeling realistic virtual muscle responses.



proportional to the square of the component of its velocity perpendicular to its long axis), while the

land environment included gravity, a ground plane, and frictional forces for ground contacts.

We used a number of different fitness functions for scoring the success of each creature in its

environment, but they all basically rewarded creatures for movement. The definition of the fitness

function in fact turned out to be surprisingly difficult to get right, even when we just wanted to

reward creatures for moving forwards. A straightforward function that simply measured the

distance moved by the creature’s center of mass over the period of evaluation had a tendency to

select for creatures that (in the fluid environment) produced an initial thrust to move away from

their starting position, but showed no further movement and soon slowed to a halt. Such

creatures would have high fitness relative to most of the randomly generated creatures in the

early generations, and would therefore be selected. However, it is clear that their fitness could be

improved if they repeated the thrust movement to swim further and faster. Unfortunately it

appeared that in many cases where these “one push” creatures were selected in the initial

generations, the population reached an evolutionary impasse (a local optimum in the fitness

landscape), and had no easy mutational routes to higher fitness. It is also possible that, in some

cases at least, if we had evaluated each creature for a longer period, then there would have been

more selection pressure for creatures generating repeated thrust. This highlights a dilemma that

we came across many times when experimenting with this system; no matter how long we

evaluated each creature, we could never be sure that it would continue to exhibit the same

behavior continuously, if simulated for periods longer than the evaluation time. There is a trade-

off in evaluation time: a longer time generates more confidence (but no guarantee) that the

creatures will perform the selected behaviors continuously, even after the duration of the

evaluation period, whereas a shorter time is desirable from a practical point of view of running the

genetic algorithm and evaluating hundreds of individuals over tens of generations in a reasonable

time.



There are various ways that can be imagined to improve the fitness function to solve these

problems. Sims himself experimented with a variety of functions26. For example, for swimming, he

gave the velocities of a creature during the final phase of the test period a stronger relative weight

in the total fitness value. This was apparently successful at rewarding continuing movement over

that from a single initial push. In our implementation we found that this kind of function did lead to

some improvements, but the population was still liable to get stuck at a local optimum fairly

frequently, where one-push creatures were selected in the early generations. Additionally, if the

distance moved by the creature was being measured at various time slices throughout the

evaluation period (so that these various distances can be weighted and summed to give a final

fitness score), we needed to decide whether to score distance moved in any direction at any one

time slice equally (in which case there was no pressure to evolve creatures that swam in a

straight line over the whole evaluation period), or whether to only reward distance moved in one

particular direction (and if so, in which direction). It was not hard to make pragmatic decisions

about such choices, but the point is that the choice of fitness function even for seemingly

straightforward behaviors is not trivial and usually requires considerable experimentation to get

right. The function that successfully produces the desired behaviors can often be somewhat more

complicated than might initially have been thought.

Even the method used to measure the position of a creature at a given instant was not

straightforward. In most runs we used the center of mass. However, in some runs creatures

evolved that would initially adopt a compact, folded configuration, then as the evaluation period

proceeded they would “unfold” in a particular direction. This unfolding had the effect of shifting the

creature’s center of mass, thereby increasing its fitness. Again, if this trick was selected in the

early generations of a run, it was sometimes hard for the population to jump out of this local

fitness optimum and find continuous movements that would generate higher fitness scores. We

experimented with various other ways of measuring distance moved, such as using the distance

moved by the body part that had moved least over the duration of the evaluation. The general

problem is, no matter what fitness function is used, there often seems to be a way for creatures to



score highly on it while not performing the sort of behavior that we, as designers of the function,

had hoped for. This problem is not insurmountable; with a more careful specification of the

function all “undesired” behaviors could presumably be detected and given low fitness scores.

However, this need for careful design of very specific, detailed fitness functions runs counter to

one of our goals of implementing the system, namely to use it as a method of automatically

generating creatures given only a high level specification of the required behavior. Nevertheless,

whilst the use of very specific fitness functions can certainly increase the chances of evolving the

desired behaviors in any given run, even using straightforward fitness functions will sometimes

produce the desired results (as will be demonstrated in the rest of this section), so our goal was

at least partially fulfilled.

One way to help prevent the runs getting stuck in local fitness optima would be to maintain the

genetic diversity of the population by introducing some kind of incomplete mixing (e.g. by using

an island model GA33). We have performed some initial experiments with incomplete mixing, but

not enough at this stage to say how effective this strategy is at solving the problem.

The preceding issues aside, our evolutionary runs proceeded in much the same way as

described by Sims26. We placed upper limits on the number of body parts a creature could have

(this limit was generally in the range of 4 to 10), and on the number of controller components

within each body part (typically, 5 to 8). We also introduced bias terms (which were parameters of

the system) that favored the selection of oscillator components (sine and saw wave generators)

over other sorts of controller components when the initial randomly generated population of

creatures was being created (or when new controller components were added to existing

networks by mutations). These terms could be adjusted to vary the probability of the generation of

creatures that displayed oscillatory movements.

Other typical settings for our runs were as follows. The population size was generally 300, and

runs lasted for 50 to 100 generations. The top 20% of genotypes from each generation were



transmitted unaltered to the next generation. The remaining 80% of the new generation was

created by selecting single parents by tournament selection (with tournament size 2 and a 90%

probability of selecting the fitter of the two creatures) and reproducing them asexually (i.e.

copying them) with probability 40%, by crossover with another genotype with probability 30%, or

by grafting with another genotype with probability 30% (the difference between crossover and

grafting is described by Sims26). For reproduction by crossover or grafting, the second parent was

chosen with a uniform random distribution from the elite 20% of genotypes from the parent

population. Mutations were then applied stochastically to the newly generated genotypes

(excluding the elite 20%). The probability of mutation was defined in terms of the mean number of

mutations per genotype plus the standard deviation (we typically used a value of 2.0 for both of

these, rounding all numbers selected from this distribution to the nearest integer, and counting

negative numbers as zero).

The integration step for the physics engine was generally 0.05 seconds. We used evaluation

periods in the range of 10 to 50 seconds of simulated time, which (without visualization) ran

somewhat faster than real time. Like Sims, we improved the speed of the system by prematurely

aborting the evaluation of creatures that did not perform well. First, any creatures that had no

controller connections to their actuators were discarded without evaluation, as they would be

unable to generate any movements at all. In addition, the interim fitness of each creature was

measured after one third and one half of the total evaluation period had elapsed. If, after one third

of the period, the creature had not moved at all then that creature’s evaluation was aborted.

Similarly, if, after half of the period, it had moved by a distance less than one fifth** of that moved

over the total evaluation period by the least fit elite creature of the previous generation (i.e. the

least fit creature from the previous generation that was transmitted directly to the current

generation), then the evaluation was also aborted.

                                                          
** This figure was chosen after a small amount of experimentation with different values.



A number of checks were also made to overcome limitations in the simulation software. Despite

various attempts to limit the magnitude of the forces applied to joints, creatures would still

sometimes evolve whose movements entailed forces and velocities that were too great for the

physics engine to resolve at the given size of the integration step. In these cases, the physics

engine tended to accumulate numerical errors to a point where the creature unrecoverably

exploded (i.e. the constraint solver failed to converge on a solution, and the integrator then

generated incorrect velocities, giving the impression that the body parts had blown apart in

random directions). The choice of integration step size for the physics engine is clearly another

compromise that must be made with this sort of system; a smaller step size produces a more

stable simulation than a larger step size, but takes longer to run in real time for a given duration of

simulated time. The MathEngine SDK does generate some runtime warnings that indicate that

this kind of situation is imminent. We kept a tally of the number of such warnings that each

creature generated, and aborted the simulation of any creature that had generated more than a

certain threshold number of them. We also checked whether a creature had actually exploded

throughout its evaluation (by checking for high velocities etc.), and immediately aborted any that

had. Note that we were using MathEngine’s SDK 1.1 for this work; subsequent experience with

using their latest offering (the Dynamics Toolkit 2.0 alpha release) suggests that the software is

now much more stable. However, our more recent experiences with using both MathEngine and

other physics engines (e.g. Havok13) for this sort of work suggest that they all have some

weaknesses in stability of simulation in certain situations. Unfortunately, it is in the nature of

evolutionary algorithms that such weaknesses will almost inevitably be encountered. A recent

review article has tested the stability of the MathEngine, Havok and Ipion engines in a variety of

situations17,18. Although these products are improving, the current situation is that, no matter

which physics engine is used, it is likely that a certain number of stability checks of the type just

described will be required in any evolutionary system of this kind.

A typical run (i.e. population size 300, 50-100 generations) would take between 4-8 hours on a

single PC. A large proportion of the evolved swimmers were snake-like creatures of various sorts



(examples are shown in figures 1 and 2). A certain amount of subjective selection was employed

to create a variety of different creatures; we would often inspect runs after a small number of

generations had passed, and only proceed with those in which interesting or unusual creatures

(both fairly subjective criteria) seemed to be evolving. A number of different strategies were

observed, including the use of various kinds of appendages to push against the water (e.g.

figures 3 and 4), and the adoption of a spiraling, “corkscrew” type motion (e.g. figures 5 and 6).

We had less time to investigate the evolution of crawlers, but the results we obtained included

creatures that used their whole body for locomotion (e.g. figure 7), and others that employed

controlled movement of appendages to push the whole body forwards (e.g. figure 8). Pictures and

movies of a wider variety of the evolved creatures are available online at

http://computing.tay.ac.uk/timtaylor/demos/mathengine/. These examples demonstrate that the

evolutionary process is a useful tool for exploring interesting regions of the vast space of different

creature designs describable with the genetic system used; it is a creative machine for generating

suitable and interesting forms and behaviors, not limited by the preconceptions of a human

designer's imagination.

Other recent work

Komosinski and colleagues have developed a system called Framsticks15,16, in which the

morphology of creatures composed of connected “sticks” (modeled as a pair of flexibly joined

particles using finite element methods), together with their neural network controllers, can evolve.

The design of the system is fairly general (e.g. it can handle the simulation of multiple creatures

existing in the environment concurrently), although the evolutionary results reported so far

concern only selection for simple behaviors such as swimming and walking in single creatures.

Lipson and Pollack have evolved morphologies for creatures composed of collections of bars and

linear actuators connected by ball-and-socket joints, along with their neural network controllers20.

The creatures were modeled using a “quasi-static” simulation method, where each frame is

assumed to be statically stable; while not being a general simulation, it is efficient to implement



and can adequately simulate certain kinds of low momentum motion such as crawling. Their

reported results to date have concentrated on evolving crawlers. The major innovation of this

work is that Lipson and Pollack have designed the “building blocks” of their creatures in such a

way that creatures evolved in simulation can subsequently be automatically manufactured as

physical robots using a commercial rapid prototyping (“3D printing”) machine. When this process

is complete, the linear actuators just have to be snapped into place, and the robot connected to

an offline power supply and computer to simulate the controller. It was found that the physical

robots manufactured in this way behaved in a qualitatively similar fashion to their simulated

counterparts (although quantitative differences emerged due largely to the simplified simulation

techniques).

Bongard and Paul studied the evolution of morphologies and controllers for crawling creatures

(using MathEngine’s SDK 1.1) 4. Specifically, they looked at the relationship between the level of

bilateral symmetry in the evolved creatures and their locomotive efficiency (quantified according

to a variety of measures). They found that creatures with a higher degree of bilateral symmetry

tended to exhibit greater locomotive efficiency than creatures with less bilateral symmetry. Their

study is a good example of how this technology may be used as a tool for investigating fairly

general questions about the consequences of evolutionary selection pressures on both

morphology and behavior.

Finally, Ray has applied user-guided evolution to a derivative of Sims’ system (again using

MathEngine’s SDK 1.1)22. Rather than using and explicit fitness function, the system displays

creatures as they are being simulated, and allows the user to select whichever ones she prefers

to be used as parents for the next generation. In this respect Ray’s work is similar to Dawkins’

“biomorphs” (although the biomorphs were only static two dimensional structures) 6. An

interesting aspect of his work is that, rather than trying to avoid the sorts of stability problems with

the physics engine as discussed in the previous section, Ray actually embraced them as another

source of interesting behavior; some of his evolved creatures were actually selected (by Ray



himself) such that their body parts would fly apart at some instances, but would always eventually

restore themselves to their “proper” configurations (i.e. where the joint constraints were satisfied).

In other words, he selected creatures that caused some degree of constraint violation when

simulated, but rejected those that got into situations where these violations were unrecoverable

by the physics engine. Ray was more concerned with the aesthetic appeal of the creatures’

behaviors rather than their adherence to “real world” physics. His work demonstrates that it can

also be interesting (from an aesthetic point of view, and also, perhaps, from a scientific one) to

simulate environments that behave somewhat differently to real world physics.

Directions for future work

The studies described in the previous section all point to interesting directions for future research.

Additionally, the continuing increase in available computing power greatly expands the

possibilities for studying co-evolutionary systems (with two or more interacting creatures

simulated concurrently) in three dimensional physically modeled environments. The feature sets

of the physics engines mentioned here continue to expand, making it easier to study the evolution

of creatures modeled not just as rigid bodies, but in other ways (for example, soft bodies) as well.

The inclusion of a wider variety of actuators, and placing more characteristics of the actuators

under genetic control, would create the potential for new types of movement to evolve.

Furthermore, experimentation with lifetime learning techniques, in conjunction with purely genetic

approaches, could be rewarding. With the ready availability of low cost, high performance

computers and physics engines, it is likely that the recent research interest in the evolution of

morphologies and controllers for physically modeled creatures will continue to grow. A workshop

on the topic at the recent Seventh International Conference on Artificial Life was well attended

and produced a lively discussion (see http://computing.tay.ac.uk/timtaylor/cobb/ for details). As a

result of the workshop, a mailing list was set up to promote discussion on the various scientific

and technical issues involved in the subject. Instructions for joining this mailing list can be found

at http://www.alife.org/mailman/listinfo.cgi/ec2m-list.
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Figure 1: Tadpole Figure 2: Long Nosed Snake

Figure 3: Breast Stroke Figure 4: Two Legged Kicker

Figure 5: Corkscrew 1 Figure 6: Corkscrew 2



Figure 7: Archer Figure 8: Spider


