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ABSTRACT

The realistic physical modelling of characters
in games and virtual worlds is becoming a
viable alternative to more traditional animation
techniques. Physical modelling can enhance
realism and allow users to interact with the
world much more freely. However, designing
controllers to move physically modelled
characters (e.g. to make a human character
walk) is generally a difficult task. Artificial life
techniques can be useful in automating this
task. For example, artificial evolution can
generate suitable controllers for simple
behaviours, given only a high level description
of that behaviour in terms of a fitness function.
In this paper, the state of the art in evolving
controllers, and also in evolving the characters’
body shapes, is described. It is then suggested
that current approaches will not be able to
scale up to more complicated behaviours. A
number of possible solutions to this problem
are described. Finally, several routes for
delivering this technology to the games
industry are discussed.

INTRODUCTION

There is a move in the computer games and
digital entertainment industries away from
traditional animation techniques and towards
accurate physical modelling of characters and
environments. By modelling the forces and
torques acting on bodies within a virtual
environment, detecting and responding to
collisions between bodies, respecting
constraints arising from, for example, joints in
articulated multi-body objects, etc., the system
behaves in a believable manner in all
situations, and the user of the system can

therefore be allowed to interact with it much
more freely. The growing popularity of this
approach is demonstrated by the appearance
over the last couple of years of a number of
off-the-shelf physics engines aimed at games
programmers (e.g. MathEngine1, Havok2,
Ipion3). While these engines handle the
modelling of inanimate bodies, programmers
are still left with the task of writing controllers
for motile objects within the environment (e.g.
cars, human characters, monsters, etc.).
Writing a controller for a physically modelled
character is a question of calculating the
appropriate forces to apply to each body part at
each point of time to achieve the desired
movement (e.g. a realistic walking gait for a
human character). This is generally a very hard
task.

There is therefore some interest in the idea of
automating the generation of controllers for
physically modelled characters. In this paper I
will present an overview of the state of the art
in evolving controllers and body shapes for
physically modelled characters, and describe
the design of such a system. I claim that
current techniques are, however, limited in
terms of the complexity of behaviours they
may be expected to produce. I suggest a
number of ways in which such systems may be
improved to generate more complex creatures
and behaviours. I conclude by suggesting a
number of ways in which this sort of
technology may best be utilised by the games
industry.

STATE OF THE ART

A number of groups have employed techniques
from the fields of artificial intelligence and
                                                          
1 http://www.mathengine.com
2 http://www.havok.com
3 http://www.ipion.com



artificial life to automate the generation of
controllers for physically simulated characters.
In this paper I will focus on work that employs
genetic algorithms or similar artificial
evolutionary methods to generate controllers,
although the use of other adaptive techniques
may certainly also be fruitful, e.g.
(Terzopoulos et al. 1994).

The use of genetic algorithms in this area
generally falls into one of two categories: the
evolution of controllers for characters with
predefined, fixed body shape; and the
evolution of both the controller and the body
shape of the creature concurrently. Examples
of the former category include (van de Panne
and Fiume 1993; Gritz and Hahn 1997; Arnold
1997; Reeve 1999; Reil 1999; Ijspeert 2000).
Examples of the latter category of evolving
both controllers and body shapes include
(Sims1994b; Ventrella 1999; Komosinski and
Ulatowski 1999; Taylor and Massey 2000; Ray
2000; Lipson and Pollack 2000; Bongard and
Paul 2000).

In the remainder of this section I will briefly
describe the design and implementation of a
system for evolving both the controller and
body shape of a character. The evolution of
controllers for characters of fixed shape can be
achieved in a similar manner, although in this
case the genetic descriptions should obviously
only describe the characters’ controllers, and
not their shapes. Full design details can be
found in the references given for specific
works.

The seminal example of such a system was
that developed by Karl Sims (Sims 1994b). He
used an artificial evolutionary process to
generate both controllers and body shapes for
creatures that could perform simple tasks such
as crawling, swimming, jumping and following
a target. Sims’ original work, published in
1994, employed a Connection Machine CM-5
parallel computer, on which he developed his
own code for performing the physical
modelling of the creatures. However, desktop
PCs are now powerful enough to run these
sorts of systems in reasonable time.

Each creature is described by a “genome” that
contains information about the body shape and
controller. In Sims’ work, the body shape was
described by a directed graph, where each
node represents an individual body part, and
the connections between nodes describe how
the parts are connected. Each node also
describes an augmented neural network type
controller for the corresponding body part.

This representation provides modularity to the
mapping from genotype (the description of the
creature) to phenotype (the instantiation of the
creature as a physical model and controller),
and naturally leads to features such as
duplication and recursion of body parts.

A run is started by randomly generating a
population of genotypes. Each genotype in turn
is translated into a physical creature, and then
evaluated in a physically simulated
environment for its performance at a given
task. Sims used two basic environments, sea
and land. The sea environment included a
simplistic model of fluid drag, while the land
environment included gravity, a ground plane,
and frictional forces for ground contacts. A
number of different criteria (or “fitness
functions” in genetic algorithm jargon) were
used for scoring the success of each creature in
its environment, but they all basically
rewarded creatures for movement.

The first, randomly generated population of
creatures typically performed poorly at the
designated task, although a few would, by
chance, have some degree of success. Each
creature was scored according to its
performance, and when all creatures had been
evaluated the population was ranked according
to score. The best individuals were kept to
form the basis of a new generation. This new
population was filled up by adding mutated
forms of these best genotypes and genetic
crosses of pairs of genotypes (i.e. new
genotypes were formed from the combination
of parts from two different parent genotypes).

By repeating this process, efficient creatures
evolved surprisingly quickly. Sims typically
used populations of 300 individuals and ran the
experiments for 50-100 generations. In a recent
reimplementation of Sims’ work, a single run
of this size would take between 4-8 hours on a
single 400MHz Celeron PC (Taylor and
Massey 2000). Pictures and movies of a
variety of creatures evolved using these
systems are available online4.

One of the nice properties of systems such as
these is that each run generally produces a very
different result due to the stochastic nature of
the evolutionary process. Sims only selected

                                                          
4 Pictures of Sims’ evolved creatures can be
seen at http://www.genarts.com/karl/evolved-
virtual-creatures.html; pictures and movies of
Taylor and Massey’s reimplementation are at
http://computing.tay.ac.uk/timtaylor/demos/ma
thengine/



for high-level behaviours such as the ability to
move forwards, but within the vast space of
different creature designs describable with the
genetic system used, there are countless forms
which can competently perform such
behaviours. The evolutionary process is
therefore a tool for exploring interesting
regions of this immense landscape of creature
designs; it is a creative machine for generating
suitable and interesting forms and behaviours,
not limited by the preconceptions of a human
designer's imagination.

LIMITATIONS OF CURRENT SYSTEMS

The work referred to in the previous section
demonstrates that artificial evolution is a
promising technique for automating the
process of controller (and body shape)
generation. However, the complexity of
behaviours that have been generated so far has
been somewhat limited; most of the work has
produced characters that can walk, crawl,
swim, jump, or, at best, follow a moving
target. These results beg the question of
whether the approach will scale to the
generation of more complex behaviours.

The major problem with using a standard
genetic algorithm, as described in the previous
section, is that the goal behaviour to be
(hopefully) evolved must be expressed in the
form of a fitness function that is used to score
each creature. The evolutionary process can
only get off the ground if the initial, randomly
generated population of creatures contains at
least one creature (and preferably more) that
can achieve a non-zero score on the fitness
function. The more complicated the function
is, the less likely this is to be the case. For
example, consider an attempt to evolve a
behaviour whereby a creature needed to
process complex visual data about the
movement of another creature standing in front
of it, and use this to decide whether that
creature was a friend or foe. This enterprise
would clearly have little chance of success if
the evolutionary process was starting from
scratch.

Researchers in the field of evolutionary
robotics have considered various methods of
overcoming these difficulties. These generally
involve either the incremental acquisition of
increasingly complicated tasks, e.g. (Dorigo
and Colombetti 1997; Perkins 1998), or the
decomposition of the task into a sequence of
easier tasks together with some way of
combining them, e.g. (Lee 1997). A problem
with many of these approaches is that the

decomposition of the task into easier and/or
incremental steps is something of an art in
itself; there are no general guidelines to
suggest the most appropriate way to do this.
What may seem like a sensible task
decomposition from the designer’s point of
view may not be the best route by which to
evolve a complex behaviour; in the worst case,
it could even be a hindrance.

Work in this area is on-going, but it has yet to
be proved whether these approaches can
usefully be employed to evolve complex
behaviours in the general case.

ACHIEVING MORE COMPLEX
BEHAVIOURS

Despite the problems described above with
evolving single creatures to perform complex
tasks, there are a number of alternative
approaches that have shown some signs of
success. In this section I will describe five of
these.

Co-Evolution

The genetic algorithms community has long
known the potential of using co-evolution to
improve the quality and complexity of evolved
solutions. The idea is that rather than evolving
a population against a fixed fitness function,
two populations are used instead, with one
evolving against the other. For example, Hillis
evolved efficient number sorting algorithms by
co-evolving a population of candidate
algorithms against a population of numbers to
be sorted (Hillis 1991). As the sorting
algorithms improved, so the population of
numbers to be sorted evolved to present
tougher challenges to the algorithms.
Evolution in one population thereby catalysed
further evolution in the other.

Sims used the same technique to evolve
interesting competitive behaviours in virtual
creatures (Sims 1994a). In this work, rather
than simulate a single creature at a time, he
simulated a couple. These two creatures were
opponents in a simple game where they had to
fight for possession of a cube that was initially
placed halfway between them.  The creatures
not only evolved behaviours to reach the cube
quickly, but also to fend off their opponents. A
wide variety of different behaviours were
evolved in this way, and the resulting
competitions were very engaging to watch.

Despite Sims’ results, I am unaware of any
subsequent work, by Sims or anyone else, in



co-evolving both controllers and body shapes
of competing creatures5. Co-evolution is
certainly a very promising technique for
developing complex behaviours, especially
where these behaviours take the form of a
competition between two or more creatures.

Virtual Ecologies

Taking co-evolution to its logical conclusion,
we could forget about defining some sort of
high-level game (such as fighting for
possession of a cube) altogether. Instead, we
could simply concurrently simulate a large
population of creatures that are competing with
each other for basic resources such as food and
space, and let the creatures reproduce “by
themselves” according to, say, how much food
they have managed to eat. That way we get
away from the sort of “artificial selection” we
have talked about up to now (a fitness function
is really the virtual equivalent of the selection
employed by livestock farmers when trying to
improve a particular trait in their animals),
towards a closer approximation to “natural
selection”. We would not be selecting for
particular high-level behaviours, but rather
creating a virtual ecology and letting it evolve
in any way it likes.

Some progress in this direction has been made,
e.g. (Ventrella 1999; Komosinski and
Ulatowski 1999), although because of the
much larger drain on computational resources
required to simulate large populations of
creatures concurrently, these studies have used
somewhat simplified physical simulations. As
computers become increasingly powerful, as
physics engines become more efficient, and,
most importantly, with the opportunities for
running massively parallel simulations
afforded by the Internet, the size of the
ecologies that can be modelled and the
complexity of the physical simulation will
certainly increase greatly over the coming
months and years.

Lifetime Learning

In the systems described in this paper, the
creatures’ controllers improve by evolution,
but they do not actually adapt whilst an
individual creature is being simulated (i.e. over
a creature’s “lifetime”).

                                                          
5 Although some work has been done on co-
evolving controllers for robots of fixed
morphology in very simple environments, e.g.
(Cliff and Miller 1996).

Some recent results from evolutionary robotics
suggest that combining an evolutionary
algorithm with the ability of the controllers to
adapt or learn over an individual creature’s
lifetime can lead to improved robustness and
complexity of behaviours compared to
evolution by itself, e.g. (Floreano and Urzelai
1999; Kondo et al. 1999).

Giving an individual creature the ability to
adapt and learn during its lifetime effectively
smoothes the search space over which
evolution is happening, thereby helping the
process to progress (Maynard Smith 1987). It
is reasonable to assume that adding these sorts
of abilities to our artificial creatures will
improve their ability to evolve complex
behaviours just as it has done in evolutionary
robotics.

Behavioural Primitives

In the previous section, various methods were
described for achieving the evolution of
complex behaviours by task decomposition.
While it has yet to be demonstrated that
complex behaviours can, in general, be evolved
in this manner, related approaches could be
more successful.

For example, rather than trying to evolve
complex behaviours, another approach is to
evolve a collection of primitive behaviours,
and then use other, non-evolutionary
techniques for combining these primitive into
more complicated sequences.

The task of programming a game character
using this approach could now become
somewhat like directing an actor in a film; the
character has a certain degree of competence at
autonomous behaviour (some actors have more
than others!), and the programmer/director
issues high-level commands to it such as “run
to the door!” or “attack the human! ”. Some
have suggested that this is the most useful
route by which this sort of technology may be
harnessed by games programmers, e.g. (Stern
1999). Alternatively, rather than directing the
creatures manually, other more traditional AI
techniques could be used to co-ordinate the
primitive behaviours to automatically generate
more complex tasks.

Various examples exist of the potential of this
kind of approach, although these have used
methods other than evolution to produce the
primitive behaviours, e.g. (Terzopoulos et al.
1994).



User Guided Evolution

Another alternative to supplying a fixed fitness
function to the genetic algorithm is to present
the user with a variety of creatures from the
evolving population at various intervals, and
allow them to select their favourite creatures to
be used as the foundation of the next
generation. The user may select the creatures
by any criteria they wish, and can therefore
guide the path of evolution according to their
own preferences without having to formally
express these preferences. Ray has recently
used this technique to evolve virtual pets
according to users’ aesthetic choices (Ray
2000). This technique allows users to
participate in the evolutionary process and
therefore feel more attached to, and more
empathy towards, the evolved creatures.

USING THE TECHNOLOGY

The computational expense of evolving
physically modelled creatures is undoubtedly a
major reason why this technology has not yet
been adopted by the computer games industry
at large. The problems with evolving complex
behaviours, as described in this paper, are also
a factor.  The former problem is already
starting to disappear with the continued
increase in available computing power, and it
is more than likely that the latter problem can
be overcome, for example in the ways outlined
in the previous section.

However, even ignoring these problems, the
question of how this technology might best be
delivered to the games industry remains. At
one end of the spectrum, it could be that it is
most productive for specialist consultants with
experience of the technology to evolve
bespoke creatures for games companies on
request, according to the company’s
specifications. At the other end of the
spectrum, an application could be delivered
that allows end-users to evolve their own
creatures. A number of alternative strategies
can be imagined in between these two
extremes. In this section I will briefly describe
three possible routes, although this is by no
means an exhaustive list.

Licensing Characters from a Virtual Zoo

One possibility would be for a specialist
artificial life company to develop this
technology in-house, and build up a huge
library, or virtual zoo, of different characters.
Games companies could inspect these
characters and licence individual characters for

specific games or other applications. This
approach would be particularly appropriate for
evolved body shapes as well as controllers, as
characters evolved in this way often have very
strange or unusual forms and behaviours. The
virtual zoo could therefore act as a source of
inspiration for new types of characters, as well
as a source for directly licensable characters.
There would undoubtedly be some intellectual
property issues to be overcome if this approach
is to be commercially viable.

Online Evolution

At the other extreme, a consumer application
could be written that allowed users to evolve
their own creatures, and to exchange them with
other users over the Internet. Alternatively, a
central server could oversee a genetic
algorithm in which the evaluation of individual
creatures was farmed out to end-users’ PCs
over the Internet. This could be achieved as a
background process on the PC, while the user
was playing a game, or it could be run as a
screen-saver. Users could also be allowed to
guide evolution according to their own
aesthetic tastes, as described in the previous
section. A whole range of other possibilities is
imaginable. The trick would be to develop an
application with an understandable user
interface to the evolutionary process, and one
that inspired the user’s interest and curiosity.

Co-Evolved Characters for Combat Games

A final example application would be to co-
evolve twin populations of creatures
competing in some sort of contest, such as a
combat game. Having co-evolved creatures in
this way, by allowing evolution in one
population to catalyse evolution in the other
(as described in the previous section), one of
the creatures in the contest could simply be
replaced by a human player. The difficulty
here would be to design a user interface that
allowed the player to control the creature in a
suitable way.

CONCLUSION

Physical modelling is becoming an
increasingly important technology in the
games industry. With it comes the need for
automated ways of generating controllers for
physically modelled characters. A number of
studies have demonstrated the potential of
artificial evolution for this purpose. Using
physical modelling and artificial evolution also
allows us to evolve the body shapes of the
characters, not just their controllers. It is



therefore a very powerful technique for
exploring potential behaviours in a given
environment. However, the studies to date
have only dealt with the generation of fairly
simple behaviours, and it is questionable
whether a straightforward genetic algorithm by
itself would be able to evolve more complex
behaviours.

In this paper, a number of potential methods
for overcoming this problem have been
suggested. These include methods to enhance
the dynamics of the evolutionary process (i.e.
co-evolution, virtual ecologies, lifetime
learning), a method for integrating this
technology with other techniques (using
behavioural primitives), and a method for
allowing users to guide the course of evolution
according to their own tastes.

A number of possible ways of delivering this
technology have also been described, although
these all have a number of obstacles to be
overcome before they are truly viable.
However, with more games companies using
physical modelling (either with their own code
or with one of the available off-the-shelf
physics engines), and with more researchers
looking at artificial life techniques for
generating controllers, we can expect to see
this technology start to appear in commercial
products in the very near future.
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