
Studying Evolution with Self-Replicating Computer ProgramsTim Taylor and John HallamDepartment of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, U.K.ftimt, johng@dai.ed.ac.ukAbstractA critical discussion is presented on the useof self-replicating program systems as tools forthe formulation of generalised theories of evolu-tion. Results generated by such systems must betreated with caution, but, if used properly, theycan o�er us unprecedented opportunities for em-pirical, comparative studies. A new system calledCosmos is introduced, which is based upon Ray'sTierra [15]. The major di�erence between Cos-mos and previous systems is that individual self-replicating programs in Cosmos are modelled (ina very simpli�ed fashion) on cellular organisms.Previous systems have generally used simpler self-replicators. The hope is that Cosmos may bebetter able to address questions concerning thesudden emergence of complex multicellular biolo-gical organisms during the Cambrian explosion.Results of initial exploratory runs are presented,which are somewhat di�erent to those of similarruns on Tierra. These di�erences were expec-ted, and indicate the sensitivity of such systemsto the precise details of the language in whichthe self-replicating programs are written. Withthe strengths and weaknesses of the methodologyin mind, some directions for future research withCosmos are discussed.1 Self-Replicating Program Systems as aMethodology for Studying EvolutionWithin the last decade, computers have become power-ful and a�ordable enough to enable a number of re-search groups to study the evolution of life in a new way.Rather than following the traditional approach of tryingto capture properties of whole populations in mathem-atical models, the new approach models a large numberof individual self-replicating entities which are competingagainst each other for resources required for replication.This is achieved by creating a computer which can runa large number of self-replicating programs in parallel1.1In practice, a virtual computer is created (i.e. implementedin software), with parallelism simulated by time-slicing between

Tom Ray pioneered this approach with his Tierra sys-tem [15, 16]. Since then, a number of other systemshave also been developed, including Avida, developedby Chris Adami and Titus Brown [2], Computer Zoo,written by Jakob Skipper [18], and John Koza's systemof self-replicating LISP-like programs [8].Using such a methodology to study evolutionary sys-tems is attractive for a number of reasons. For example,as the self-replicators are being modelled individuallyrather than as populations, the simulation respects thefact that a gene does not work in isolation. Rather, itis part of a large ensemble of genes which must all worktogether with some degree of cooperation in order for theindividual organism which carries them to replicate andthus propagate the genes collectively [6]. Only throughexplicitly modelling individual organisms may we beginto understand the complex interactions between genesand organisms, and how these interactions a�ect the dy-namics of the evolutionary process. In addition, by in-cluding an analogy to the process of development of mul-ticellular organisms from single cells2, this methodologyprovides a tool for investigating the interplay betweensuch generative processes and an organism's genes|aquestion which is currently the subject of considerabledebate (e.g. [6, 7, 14]).In fact, systems which use self-replicating programsare not merely simulations. As the programs replic-ate themselves (with genetic novelty being introducedby mutations and the awed execution of instructions),rather than being selected and copied according to anexternally de�ned �tness function (as in genetic al-gorithms), they recreate the conditions necessary forevolution. Such systems can therefore be called syntheticlife or arti�cial life3, rather than just simulations.Every computer-based self-replicating program systemtherefore provides a new instance of evolution. Thisthe programs. Similar approaches are also being employed to in-vestigate related subjects such as the spontaneous emergence ofself-replicating programs (e.g. [8, 13]), although it is unclear whatthis work can tell us about the emergence of biological life.2For example, by modelling organisms as parallel programswhich can dynamically create additional processes.3The term `arti�cial life' is now used in a wide variety of situ-ations, but we would argue that only systems based upon self-replicating entities are deserving of the term in the strong sense.

leads the way to a �eld of empirical study we have previ-ously been unable to explore, namely comparative evol-ution. This refers both to comparisons between di�er-ent instances of evolutionary systems (including biolo-gical evolution), and also to comparisons within a singlesystem. The latter involves investigating the sensitiv-ity of the system to initial conditions, parameters, etc.by running it many times over under slightly di�erentconditions|a strategy which is not, of course, possiblein the case of biological evolution.When studying a population of organisms which arethe end-product of an evolutionary process, we generallywant to disentangle the relative contributions of threefactors to the �nal state of the system:1. Features due to chance events/historical accident.2. Features due to the particular components of the sys-tem and to the laws governing their interaction.3. Features which may be general to a wide class of evol-utionary systems.Through empirical studies of comparative evolution,the hope is that we can begin to investigate each of thesefactors, and move towards a truly general theory of ge-netic auto-adaptive systems (to use a term suggested in[1] to cover both biological evolution and self-replicatingprogram systems).When studying the performance of a genetic auto-adaptive system it is important to consider the relativecontributions of each of the three factors. For example,runs on Tierra often result in the evolution of `parasite'programs which cannot replicate by themselves, but util-ise the code of neighbouring programs to perform thistask [15]. At �rst glance, this is an exciting and un-expected result. However, when Tierra's mechanismsfor template-driven branching are considered, where theow of control in a program can jump just as easily to apoint on a nearby program as it can to somewhere on thesame program, the fact that parasites emerge becomesa little less surprising. The fact that we observe para-sitic behaviour in nature and in Tierra might lead one tosuppose that this may be a common feature of geneticauto-adaptive systems. However, on closer inspection itwould appear that the emergence of parasites in Tierraowes much to the particular design of the language.Parasites and symbiosis also emerged in ComputerZoo, but there too, Skipper came to the conclusion that\the concept of remote execution seems to be essentialto the evolution [of parasitic behaviour]" [18].A number of researchers have voiced their concernabout the extent to which self-replicating program sys-tems can really help us in our understanding of biolo-gical evolution. Mathematical biologist Robert May hassaid that, although he �nds this work stimulating, he has\slight reservations about the extent to which the conclu-sions are perhaps inadvertently built into the program",

as well as doubts about the robustness of the �ndings4.These are justi�ed concerns, but they can be partiallyallayed by using carefully designed comparative studies[3]. In this way, by manipulating individual factors andnoting e�ects on measured variables, the relative contri-butions of factors to the behaviour of the system can beinvestigated.Indeed, several within-system comparative studieshave been published for Avida (e.g. [1]) and Tierra[16]5. However, just looking at di�erences within a sys-tem may not be enough to satisfy critics of this meth-odology. There will always be questions of how closean analogy is being drawn to biology, and of what stageof biological evolution the system is trying to recreate.Problems arise in these areas because there is a conictbetween trying to model the physics and chemistry ofthe real world, and creating an e�cient and \natural"representation for the logical/informational world of thecomputer. The complexity of the physical/chemical nat-ural world must usually be greatly simpli�ed in a com-putational model, and many aspects of this complexityare ignored completely.The extent to which such questions matter dependsupon whether one is really trying to model biologicallife, or rather trying to create arti�cial life in an appro-priate form for the digital medium. To the extent thatthe former is true, it must be asked how important arethe simpli�cations and omissions of the model to the per-formance of the system.These issues again highlight the need for comparativestudies, not only within systems, but also between them.The greater variety of genetic auto-adaptive systems wehave access to, the more we can learn about how im-portant the particular components of a system, and thelaws governing their interactions, are to the behaviour ofthat system. Unfortunately, because of the impossib-ility of exactly modelling the complexities of physicaland chemical systems, it is still the case that, at leastin the near future, self-replicating computer systems willbe more similar to each other than they are to biolo-gical evolution. Therefore, we may still not be able tolearn much about biological evolution at this stage usingsuch a methodology. However, this should not preventus from exploring these systems, as gross simpli�cationsmust be made in the initial stages of any branch of sci-enti�c enquiry.2 Motivations for Building a New Ge-netic Auto-Adaptive SystemThere are a number of reasons why the new system hasbeen created. The �rst is simply because, as just men-4From [4], Chapter 8.5This study looked at the e�ects of using each of four di�erentinstruction sets. A more informative experiment would considerthe e�ects of individual instructions within an instruction set.

tioned, the more such systems we have, the more we canlearn about evolution. This is especially true if the sys-tems are somewhat di�erent to each other.A second reason was to attempt to pitch the analogyat a somewhat later stage of biological evolution. One ofthe original aims of Tierra was\to parallel the second major event in the his-tory of life, the origin of diversity [the Cambrianexplosion, 600 million years ago]. Rather thanattempting to create prebiotic conditions fromwhich life may emerge, this approach involves en-gineering over the early history of life to designcomplex evolvable organisms, and then attempt-ing to create the conditions that will set o� aspontaneous evolutionary process of increasing di-versity and complexity of organisms. This workrepresents a �rst step in this direction, creatingan arti�cial world which may roughly parallel theRNA world of self-replicating molecules (still fall-ing far short of the Cambrian explosion)" TomRay [15].The system described in this paper is called Cosmos6.It has been designed to model (in a very simpli�ed fash-ion) some of the features of cellular organisms, such asgene regulation, an evolvable mapping between genotypeand phenotype, energy storage, inter-cellular communic-ation and inter-organism communication. The hope isthat Cosmos may be better able to address questionsconcerning the sudden emergence of complex multicel-lular organisms during the Cambrian explosion, in theface of selective pressures which should normally forceevolving systems in the direction of smaller and simplerorganisms. This is a question that has interested ecolo-gists for a long time.It is a commonly held belief that once evolution hitsupon multicellularity, the emergence of complex organ-isms is an inevitable result. We may therefore wish toask questions such as: How easy is it for evolution to hitupon multicellularity? What are the initial advantagesfor organisms that adopt multicellularity over those thatdo not? What conditions are required for multicellularorganisms to emerge?On the other hand, mathematical models of eco-systems suggest that, in general, increased complexitymakes for diminished community stability [11]. As thereare many cases where Nature appears to maintain eco-system stability despite the complexity of the ecosystem,there is therefore also a need to \elucidate the deviousstrategies which make for stability in enduring naturalsystems" ([11] p.174).The creation of the Cosmos system not only requiredvarious new features to be added to the basic Tierra6Cosmos is an acronym for \COmpetitive Self-replicating Mul-ticellular Organisms in Software".

design, but also required a number of existing features tobe modi�ed to �t the new analogy. The main innovationsof Cosmos are described in Section 3, but the reasons forchanging existing features of Tierra are as follows:� It has already been said that programs in Tierra candirectly execute the code of neighbouring programs.This could be argued to be analogous to certain pro-cesses in a (hypothetical) system of self-replicatingRNA molecules. However, as Cosmos programs aresupposed to be analogous to cellular organisms, theyshould not be able to directly execute the genetic codeof other organisms. There is clearly still a need to al-low organisms in Cosmos some method of communic-ation and/or interaction, but this should preferablybe somewhat more indirect.� In Tierra, CPU time is the analogy for energy in abiological system. At each timeslice, every programis allowed to execute a certain number of instructions,depending only on the size of the program being ex-ecuted. In a sense, the programs are getting energy`for free', in that there is no notion of a programhaving to capture and store energy, and then convertthe energy into useful work (executing an instruc-tion). Cellular biological organisms certainly do haveto concern themselves with such issues, so the ideaof energy (CPU time) as a commodity which mustbe captured, stored and converted to useful work isincorporated into the design of Cosmos.� As a consequence of Tierran programs being givenenergy for free, a somewhat arbitrary mechanism hasto be introduced to decide which programs get killedo� when the available memory in the system starts to�ll up. The `reaper queue' performs this function|programs are placed at the bottom of the queue whenthey are born, and programs at the top of the queueget killed o� when more memory is required. Pro-grams can move up the queue if they cause error con-ditions when run, and they can move down the queueif they successfully execute di�cult combinations ofinstructions, \but, in general, the probability of deathincreases with age" [15]. The reaper queue e�ectivelyimposes an upper limit on the lifespan of programs.While at �rst glance this may seem like a sensiblemechanism, there is no a priori reason for assumingthat there should be a �xed maximum lifespan for allmembers of an evolving system. Indeed, in naturewe see great diversity in the duration of organismlife-cycles. The typical lifespan for members of a spe-cies is presumably a compromise between factors suchas an individual's longevity, its fecundity, and theevolvability of the lineage. In Cosmos, the chance ofan organism dying depends upon how much energyit has stored within it (as explained in Section 3).

This mechanism imposes no fundamental limits onthe lifespan of organisms.This �nal point raises a more fundamental question.In any population of self-replicating entities which arecompeting against each other for resources required forreplication (e.g. energy and materials), there are threefactors which determine the rate at which any particulartype of replicator will spread throughout the population[6]. These are the life-span or longevity of the replic-ator, the rate at which it replicates (its fecundity), andthe number of errors in makes while producing copies ofitself (its copy-�delity). In Tierra, evolution can changethe fecundity of a program by making it shorter or longer(a shorter program can be copied quicker than a longerone, all other things being equal). However, the reaperqueue mechanism means that programs have minimalcontrol over their longevity. Tierran programs also haveno control over their copy-�delity, as this is determinedby global parameters of the system. The design of Tierratherefore restricts programs to evolve along the `fecund-ity axis', with longevity and copy-�delity being more orless �xed. Cosmos has been designed to allow organismsto also evolve along these other two axes.There is an additional advantage in requiring programsto capture energy (potential CPU time) from the envir-onment and store it for future use: each program be-comes a potential resource of energy for other programs.There is therefore the potential for predator programs toevolve which prey on the energy resources of other pro-grams, and for an exploitative coevolutionary arms raceto emerge [12]. If such a process occurs, organisms ona number of di�erent trophic levels might emerge in thesystem. Such conditions are undoubtedly of great im-portance in the evolution of complex organisms. In fact,it has even been proposed [19] that the Cambrian explo-sion was caused by the appearance of the �rst organismsthat ate other organisms (heterotrophs).3 Novel Features of the Cosmos SystemThe Cosmos system is explained in detail in [20]. Itis written in an object-oriented style that allows it tobe easily modi�ed and expanded. The general designphilosophy has been to make the system as exible aspossible and to try to model as many features of cellu-lar organisms and their physical/chemical environmentas possible, at least in a very abstract way, so as not toconstrain the system's evolutionary potential. In addi-tion, care was taken to ensure that all features of thesystem could be implemented in a computationally e�-cient way.The general mode of operation is the same as Tierra,in that it simulates the parallel execution of a large num-ber of self-replicating programs written in a low level lan-guage that has been designed to be robust under muta-

tion. Variety between programs is introduced by twomethods: a mutation operator, whereby any bit of anyprogram in the system can be ipped (with a constant,low probability), and awed execution of instructions,whereby an instruction, which would normally be ex-ecuted once, might instead by execute twice or not at all(the rate at which this happens is again very low, but isan evolvable property of an individual program).Cosmos uses a di�erent instruction set to Tierra. MostTierran instructions have equivalents in Cosmos, but ad-ditional instructions are included to provide the di�erentfunctionality described below (and in Section 2).As already mentioned, a primary motivation for build-ing Cosmos was to address questions concerning the sud-den emergence of complex multicellular organisms in theCambrian period. In Cosmos, parallel programs are con-sidered as the analogy of multicellular biological organ-isms. The same analogy has been used for studying mul-ticellularity in Tierra [17, 21, 22]. (Using this analogy,the process of development from a fertilised egg cell to anadult organism is equivalent to the formation of a paral-lel computer program from an initially serial program bythe dynamic creation of parallel processes as the programruns.)Therefore, Cosmos has been designed with mechan-isms to allow for parallel programs with inter-processcommunication and analogies for genetic regulation andenergy transfer between cells. The main features whichdi�er from some or all previous systems are as follows:3.1 CellularityEach program within Cosmos is an Organism object. Anorganism contains one or more Cell objects. Each Cellobject represents a single process, so that an Organismwith one Cell is a serial program, and an Organism withmultiple Cells is a parallel program. A Cell contains a bitstring|theGenome, which gets translated to the execut-able code of the process. A Cell also contains a numberof other objects, including: Nucleus Working Memoryfor writing a copy of the Genome for replication; Com-munications Working Memory for composing arbitrarymessages; a Regulator Store containing promoters andrepressors which dictate which sections of the Genomeare translated; a bu�er for receiving incoming messages;an `Energy Token' Store; four 16 bit registers and a stack.When a Cell issues a divide command, the contents ofthe Nucleus Working Memory are written to the Genomeof a new Cell object in a new Organism object. Most ofthe other structures of the new Cell are initially empty,but half of the parent Energy Token Store is transferredto the child, as is half of the contents of the RegulatorStore.The process by which a Cell dynamically creates aparallel process (another Cell) within the same Organismis exactly the same, except it is initiated by a split

command rather than a divide.Other points to mention are that when a Cell splits,it can specify a preferred location for its o�spring in re-lation to itself (which is important for intercellular genecontrol and energy transfer, explained later), and, oncecreated, a Cell can migrate to a new location withinthe Organism. There is also an experimental parameterwhich de�nes the energy cost of multicellularity (i.e. ateach timeslice, a certain number of energy tokens are de-ducted from each Cell in a multicellular Organism, pro-portional to how many neighbouring Cells it touches).It is worth highlighting a few consequences of thisdesign. As mentioned previously, some experiments havealready been conducted on evolving parallel programs inTierra [17, 21, 22]. (This work will be referred to asParallel Tierra.) Parallel Tierra uses a shared memoryapproach to parallelism, and, although it is theoreticallycapable of supporting MIMD (Multiple Instruction, Mul-tiple Data) programs (i.e. di�erentiated multicellular or-ganisms), it has so far only demonstrated the evolutionof SIMD (Single Instruction, Multiple Data) programs.In contrast, Cosmos uses a distributed memory model ofparallelism, and the regulator system that it employs (ex-plained later) should promote the emergence of MIMDprograms. In addition, unlike in Parallel Tierra, each cellwithin a multicellular organism in Cosmos actually con-tains a separate copy of the genome. Although this mayappear to be unnecessary, it has a number of possibleadvantages. For example, the process of cell splitting(organism growth by the creation of parallel processes)is virtually identical to that of cell division (creatinga new organism). This means that it is far easier forevolution to experiment with multicellular organisms, aslittle change is required from the basic self-replicating al-gorithm to produce an organism that grows rather thandivides. Cosmos is therefore better suited for lookingat the initial emergence of multicellular organisms fromunicellular ones7, and the conditions under which suc-cessively more complex multicellular organisms mightevolve. Any satisfactory account of the evolution of mul-ticellular organisms must proceed in a stepwise mannersuch as this. As Richard Dawkins notes in [5], \[a] com-plex developmental sequence has to have evolved from anearlier developmental sequence which was slightly lesscomplex" (p.258), so \[t]he Darwinian must begin byseeking immediate bene�ts to genes promoting this kindof life cycle, at the expense of their alleles" (p.263). An-other consequence of the design is that all cells within anorganism can potentially divide to produce a new organ-ism. In other words, they are all potentially germ-linecells8|no a priori assumptions are made as to whichcells are germ-line and which are not.7In contrast, in the work reported on Parallel Tierra, the initialancestor program has itself been parallel rather than serial.8Unlike in Parallel Tierra where only one process is capable ofproducing a new organism.

3.2 CommunicationCosmos uses a very exible method for allowing pro-grams to broadcast and receive messages to and fromother programs. Basically, any cell can compose an arbit-rary bit string in its Communications Working Memory,and then transmit this message to the environment.Other cells (which could belong to the same organismor a di�erent one) can then issue a command to pick upspeci�ed types of environmental messages which are be-ing transmitted from cells in their locality. This mech-anism is an attempt to allow programs to develop ar-bitrary channels of communication in much the sameway that biological organisms can communicate arbit-rary messages using media such as light and sound.There is a further twist to this mechanism|if certainconditions are matched for a received message, it willbe treated as equivalent to the host code (i.e. it maybe executed like a section of the program). In this way,genetic material may also be transferred between pro-grams. Again, the general design philosophy has beento allow the evolutionary process some of the freedomsenjoyed by biological organisms and to prevent it frombeing unduly constrained. The analogy to the biolo-gical case is tenuous, but the fact that we are workingwith a logical/information medium, rather than a phys-ical/chemical medium, must be respected. Whatever thedetails of the design, the important point is to providethat organisms with some forms of communication, as weare only now beginning to realise the great importanceof communication in biological organisms even as simpleas bacteria [9].3.3 A 212D EnvironmentOne of the problems that has been observed with the pro-cess of evolution in Tierra is that it su�ers from prema-ture convergence due to global interactions between cells[2]. Adami and Brown sought to overcome this problemin Avida by giving each of the cells a location on a twodimensional toroidal grid. Cells can only interact withother cells occupying nearby grid positions, thereby slow-ing down the rate of propagation of evolutionary changesthroughout the total population and promoting hetero-geneity (biodiversity). In Cosmos, programs live on a2D grid, where each cell occupies a speci�c grid posi-tion. Each organism is at|that is, each of its cells mustbe located at a di�erent position on the grid. Withina multicellular organism, individual cells can only passregulators and energy tokens to neighbouring cells withwhich they are in physical contact. Cells from di�erentorganisms can, however, share a grid position and thuscompete for energy. The system is therefore 2 12D, butis still computationally easy to manage. Organisms canmove around the grid if their cells execute the appropri-ate instructions.

As well as promoting biodiversity, this design meansthat the organisms live in a Euclidean space which is atleast partially comparable to the 3D space of biologicalorganisms.3.4 Energy TokensAt the beginning of each timeslice, a number of energytokens are distributed across the environment. Each cellmust issue an et collect command to pick up tokens fromits current location. These tokens get added to the cell'sEnergy Token Store. When it is that cell's turn to ex-ecute some instructions, energy tokens are deducted fromits store for each instruction it executes. If the level ofthe store falls below a certain threshold, the cell dies.There is a (high) limit on the total number of cellsthat may exist on a single Cosmos system. If this limit isreached, memory is released by killing o� cells stochastic-ally, where the chance that a cell is killed is inversely pro-portional to the level of its Energy Token Store. How-ever, the total number of cells in the system can also bee�ectively controlled via the quantity of energy tokensthat are pumped into the environment at each timeslice.By reducing this quantity, it is possible to reach a situ-ation where this global culling is never required, becausethe rate at which cells are dying through lack of energyequals the rate at which new cells are being produced.It could be argued that this mechanism is to someextent equivalent to the `reaper queue' of Tierra|that`illegal instructions' are just being replaced by `amountof energy' as the factor which governs how long a cellsurvives. However, the current method has the advant-ages of not imposing a maximum age limit on cells, andof allowing the possibility of the development of trophiclevels within the population of organisms, as mentionedin Section 2.An additional feature concerning energy tokens is that,in a multicellular organism, a cell can send energy tokensto neighbouring cells with which it is in physical contact.This feature was included to allow for the possibility ofthe evolution of organisms which possess specialised en-ergy collecting cells which distribute energy to the restof the organism.3.5 Indirect Mapping from Genotype to Pro-gram InstructionsThe genome of a cell in Cosmos is literally representedas a string of bits, which gets translated into instructionsusing a `genetic code' stored in the cell. In other words,in contrast to any other system of this type, there is anindirect mapping between genotype and phenotype9.It has been argued that the mapping from genotypeto phenotype determines the phenotypic variability of a9Where `phenotype' in this case refers to the executableprogram.

species, and therefore its evolvability [23]. Cosmos can beused to investigate such issues. For example, it is easyto test the e�ect of di�erent mapping schemes on thebehaviour of the system. Also, it can easily be con�guredso that each cell owns its own map of the genetic code,which can therefore evolve along with the rest of the cell.3.6 Regulation of the GenomeThe ow of control when reading a genome is gov-erned by the presence of Regulators. These come in twoforms, promoters and repressors. Both types are associ-ated with a short bit string which determines to whichparts of a genome they may bind. Promoters de�ne thesites at which translation of the genome may begin, andrepressors de�ne sites at which translation stops. Thereare two ways that regulators can enter (or leave) a cell|they can either be produced (or destroyed) by the cellitself through the execution of speci�c commands in theinstruction set, or, in the case of multicellular organisms,they can be passed from one cell to a neighbouring cellwithin the organism. In this way, a complex regulatorynetwork can emerge. This mechanism was designed inan attempt to loosely model gene regulation in biologicalcells. It is hoped that such a system might promote theemergence of cell di�erentiation via gene control in mul-ticellular organisms. Another consequence of this mech-anism is that, as the genome and the regulators work atthe level of individual bits, di�erent promoters are notrestricted to binding to the genome in the same read-ing frame. In other words, if, for example, one promoterbinds to the genome �ve bit positions down from a secondpromoter, and each instruction is encoded in six bits,the �rst bit of the �rst instruction translated by the �rstpromoter is actually the last bit of the �rst instructiontranslated by the second. The promoters are working indi�erent reading frames, and will translate the genomeinto completely di�erent programs. This can also hap-pen in biological systems, where it has been observedthat some species actually encode multiple instructionson the same section of the genome by using shifted read-ing frames (e.g. [10] p.144).4 Observations from Preliminary RunsIn this section, some observations from the very �rst ex-ploratory runs of Cosmos are described. The purpose ofthese was to quickly ascertain the basic behaviour of theevolving programs, and to check that the system workedcorrectly over a number of long runs, before commencingwork on more carefully designed, more speci�c, compar-ative experiments.Three long runs have been conducted, each using sim-ilar parameter settings, but with di�erent schedules ofenergy token distribution across the environment. Theparameter settings for the runs are listing in the Ap-

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

100

200

300

400

500

600

700

800

900

1000

TIMESLICE

N
U

M
B

E
R

 O
F

 O
R

G
A

N
IS

M
S

 I
N

 P
O

P
U

L
A

T
IO

N

RUN A − ALL ORGANISMS

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

100

200

300

400

500

600

700

800

900

1000

TIMESLICE

N
U

M
B

E
R

 O
F

 O
R

G
A

N
IS

M
S

 I
N

 P
O

P
U

L
A

T
IO

N

RUN B − ALL ORGANISMS

Figure 1: Number of Organisms plotted against Time inRun A (left) and Run B (right). See text for details.pendix. In the light of the discussion in Section 1 itis stressed that the scienti�c signi�cance of these ob-servations, by themselves, is minimal, as they are notcarefully constructed comparative experiments. Mostimportantly, each experiment has so far only been runonce, so conclusions cannot be drawn as to the general-ity of the observed results across a wide range of randomnumber seeds.For this reason, the runs are not analysed in greatdetail. However, they are described primarily to demon-strate that the behaviour of the system is somewhat dif-ferent to Tierra. This was expected, and emphasises thefact that an important factor governing the behaviourof these systems is the speci�c design of the language inwhich the programs are written, and the rules governinghow they interact with their environment.In these runs, a grid size of 50 x 50 was used. Thegrid was initially inoculated with 900 identical ancestorprograms, evenly distributed across an area of 30 x 30positions in the centre of the grid. The ancestors per-form more or less the same actions as does the Tierranancestor described in [15]|the general procedure is to�rst calculate (by template matching) the start and endpoints of the genome in memory; then to copy instruc-tions one at a time from the beginning of the genome tothe end into the Nucleus Working Memory (this sectionof the program will be referred to as the `copy loop'); and�nally to issue a divide instruction to create a new organ-ism object with a genome constructed from the contentsof the Nucleus Working Memory. At each timeslice, eachcell in the population was allowed to execute 10 instruc-tions (if it had enough Energy Tokens). Each run lastedfor about 1 million timeslices10.Comparing the results of the runs across a numberof measures, Runs B and C gave qualitatively similarresults, but these were fairly di�erent to the results of10As there were, on average, about 300-400 cells in the popu-lation throughout the runs (Figure 1), the system therefore ex-ecuted about (300 or 400)x10x1000000, or 3-4 billion individualinstructions, during the run. This took approximately 100 hoursof processor time on a Sun Sparc 4 workstation.

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

x 10
5TIMESLICE

L
E

N
G

T
H

 O
F

 G
E

N
O

M
E

 (
N

U
M

B
E

R
 O

F
 B

IT
S

)

RUN A − DATA FOR SELF−REPLICATING CELLS ONLY

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

x 10
5TIMESLICE

L
E

N
G

T
H

 O
F

 G
E

N
O

M
E

 (
N

U
M

B
E

R
 O

F
 B

IT
S

)

RUN B − DATA FOR SELF−REPLICATING CELLS ONLY

Figure 2: Length of Genomes plotted against Time inRun A (left) and Run B (right). See text for details.
0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

x 10
5TIMESLICE

R
E

P
L

IC
A

T
IO

N
 P

E
R

IO
D

 O
F

 C
E

L
L

 (
N

U
M

B
E

R
 O

F
 T

IM
E

S
L

IC
E

S
)

RUN A − DATA FOR CELLS WITH 100% COPY−FIDELITY ONLY

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

x 10
5TIMESLICE

R
E

P
L

IC
A

T
IO

N
 P

E
R

IO
D

 O
F

 C
E

L
L

 (
N

U
M

B
E

R
 O

F
 T

IM
E

S
L

IC
E

S
)

RUN B − DATA FOR CELLS WITH 100% COPY−FIDELITY ONLY

Figure 3: Cell Replication Periods plotted against Timein Run A (left) and Run B (right). See text for details.Run A. Because of the similarity between B and C, thefollowing discussion will describe Runs A and B only.In none of these initial runs did multicellular organismsevolve in signi�cant, sustained numbers. For this reason(i.e. the majority of organisms were single-celled), theterms `organism' and `cell' are used more or less inter-changeably in the following discussion.The runs only di�ered in one respect (apart from therandom number seed)|the way in which energy tokenswere distributed around the environment at the start ofeach timeslice11.In Run A the distribution was even, i.e. every grid po-sition was given the same number of energy tokens. Tentokens were deposited at each position at each timeslice,which could enable a cell to execute ten instructions.Therefore, as long as there is only one cell at a givenposition, that cell can obtain su�cient energy from theenvironment to survive inde�nitely, without having tomove around in search of more energy tokens.In Run B, the grid was divided into �ve bands of 10x 50 positions for the purposes of energy token distri-bution. Grid positions in the leftmost band received 8energy tokens per timeslice, and each band to the right ofthis received one more token per timeslice (so the middle11Also, Runs A and C lasted for 1 million timeslices, whereasRun B, running on a slower machine, was terminated after 880,000timeslices.

band received 10, and the rightmost band received 12).The total number of energy tokens deposited in the en-vironment at each timeslice was the same as in Run A,but in Run B grid positions in the two leftmost bands re-ceived fewer tokens than average, and those to the rightreceived more than average. The particular distributionused meant that 60% of the grid positions received su�-cient (or more than su�cient) energy tokens to supporta single cell, but 40% received insu�cient energy.Figure 1 shows how the number of cells in the systemvaried over time. Although the upper limit on the num-ber of cells in the system was set at 2500, most of the900 ancestral programs died o� almost immediately inboth runs. This was due to overcrowding, as each gridposition can only support a single cell. When a cell di-vides, its o�spring is placed at a random nearby grid po-sition, so the environment can only support populationswhere there is some space between individual organisms(at least in the case where these organisms are immob-ile). In Run A, the population size stabilised at around450 organisms (at least until timeslice 700,000), and inRun B it stabilised at around 260-270 organisms. (Thefact that Run B supported about 60% of the numberof organisms supported by Run A is a consequence ofthe di�erent energy token distributions, mentioned pre-viously.)Figure 2 shows how the length of genomes in thepopulation varies over time12. (The length of the ini-tial ancestor program is 396 bits, i.e. 66 6-bit instruc-tions.) One di�erence between the behaviour of Cosmosin these runs and that reported for runs on other sys-tems [15, 16, 22, 21, 18] is the fact that in Cosmos, ateach timeslice, all of the genomes are of roughly the samesize|there are no parasites or symbiotes of much shorterlength (as are often observed in the other systems). Thisresult was, of course, expected, as Cosmos does not allowcells to execute the code of other cells.There are a few more points of interest about Figure 2.In both runs, over the �rst 50,000 to 100,000 timeslices,there was a tendency for program length to increase, andthere is considerable diversity in the lengths of programsin the population at any given time. This increase in pro-gram length is accompanied by a decrease in fecundity|the programs are replicating at a slower rate (Figure 3).This is a surprising result, as, recalling the discussionat the end of Section 2, one would ordinarily expect pro-grams in such a system to evolve in the direction of higherfecundity (at least, this is the general behaviour observedin runs of Tierra). A closer look at how the programschanged during this period reveals that extra et collectinstructions were being inserted into the programs' copy12In this �gure, at each timeslice data is only included for self-replicating cells, i.e. those which had made at least one faithfulcopy of themselves by that time. In this �gure, and also in Figure3, the darkness of the plot at any given point corresponds to thenumber of cells taking that ordinate value at that timeslice.

loops. The decrease in a program's overall �tness due tothe increase in program length that results from the ad-dition of extra instructions is evidently more than com-pensated by the increase in �tness due to the collectionof more energy from the environment (the more storedenergy a program has, the less likely it is to die13).However, at around about 100,000 timeslices (slightlyearlier in Run A, later in Run C), there is an abruptchange to organisms of much shorter length. This occurswhen a mutation creates a program without many of theinitial instructions which are concerned with the calcula-tion of the size of the genome, which actually turn out tobe redundant due to various details of the memory ad-dressing scheme used and the particular actions of someof the instructions. Once this transition has occurred,the length of the programs remains fairly stable through-out the rest of the run. Although this general patternwas observed in all three runs, the actual lengths of pro-grams after the transition were slightly di�erent in eachcase|in Run A the programs settled in the range ofroughly 310-320 bits, in Run B it was 330-350 bits, andin Run C, 270-290 bits. It is also known that it is possibleto write considerably shorter self-replicating programs (aself-replicator of length 126 bits has been hand-writtenby one of the authors [TJT]), yet in each of these runsthere was no gradual decrease in length once the initialtransition was made. This observation emphasises thefact that some fairly signi�cant details of the results (inthis case the lengths of the programs at the end of therun) depend upon chance events (in this case the particu-lar mutation that caused the initial transition to shorterprograms). The population certainly does not march in-evitably to some sort of global optimum state.One more point about Run A (left side of Figures 2and 3) is that, roughly between timeslices 700,000 and850,000, the population completely lacked any individualorganisms that were able to make exact copies of them-selves. A closer look at the programs that were aroundduring this period shows that they generally retainedmost of the code required for self-replication, but withminor errors that prevented them from replicating cor-rectly. Importantly, however, they still generally con-tained a loop (the copy loop inherited from their an-cestors) with many et collect instructions within it, sothe programs generally had high energy levels and weretherefore unlikely to be killed o�. The total number oforganisms in the population was slightly depressed dur-ing this period (Figure 1), but not by a great amount.At around timeslice 850,000 a mutation occurred whichreintroduced faithful self-replicators into the population.Figure 3 shows how the length of time between suc-cessive replications of a cell (i.e. the speed with which13The time of death of individual organisms was not recordedfor these runs, so graphs of organism longevity against time (whichmight be expected to rise if this explanation is correct) cannot beplotted. This will be corrected in future runs.

a cell replicates) varies over time14. Whereas in Run A(left side of Figure 3) the replication period is fairly staticafter 100,000 timeslices throughout the rest of the run,in Run B (right side of Figure 3) and in Run C, therewas a fairly gradual increase in replication period (i.e. adecrease in fecundity) over the run. This occurred des-pite the fact, as mentioned earlier, that the fecundityof organisms might be expected to increase over timein systems such as this, and also despite the fact thatthe length of the programs remained fairly constant dur-ing the run. Again, inspection of the programs overthis period shows that there was a gradual accumula-tion of et collect instructions within the copy loop. Asthe length of the programs remained fairly constant, itappears that most of these new et collect's came aboutby the mutation of existing (apparently redundant) in-structions in the programs. There was a small trendfor an increase in the number of instructions containedin the copy loop over time (the new instructions gener-ally being even more et collect's), which accounts for thegradual increase in replication period.5 Conclusions and Directions for FutureResearchThe results of these initial exploratory runs of the systemdemonstrate, if nothing else, that Cosmos behaves some-what di�erently to systems such as Tierra and Avida.This was expected, because of the di�erences in designhighlighted in Sections 2 and 3. The results also provideencouraging signs that Cosmos is capable of displayingdiverse behaviours under di�erent conditions, and thatin many cases the programs do not seem to be simplyevolving in the direction of increased fecundity (as is theusual observation in other systems of this type). Much ofthe interesting behaviour of the results reported seems tobe due to the fact that energy is a commodity to be col-lected and used. As the organisms are responsible for en-ergy collection, they have some control over their expec-ted lifespan (their longevity), which is certainly also thecase in the evolution of biological organisms. Programsin Cosmos also have some control over their copy-�delity,as the rate at which aws occur as a program runs is alsoan evolvable parameter of each program. Future experi-ments on Cosmos will look in detail at the general natureof the relationship between replicator longevity, fecund-ity and copy-�delity in evolving populations.A series of more detailed and careful experiments withCosmos is shortly to begin. One important question toconsider right at the start is how much of the behaviourof the system is due to chance events. In other words,14In this �gure, at each timeslice data is only included for self-replicating cells with 100% copy-�delity (i.e. those that had onlyever produced exact copies of themselves). This restriction is dueto the way in which the replication rate �gures were collected, andwill be corrected in future runs.

how much do results vary when running the system anumber of times under exactly the same conditions (ex-cept for a di�erent random number seed)? It is vital tohave some idea of this variability in order to know howmany trials should be conducted for each set of para-meter settings in future experiments. The role of chanceevents in determining the behaviour of the system mayhave been particularly inuential in the runs reported inthis paper, as the fairly small population sizes will havepromoted genetic drift. Tests will be run to gauge themagnitude of this e�ect.Experimentation will then concentrate on the investig-ation of a number of theories which have been proposedto explain the initial emergence of multicellular biologicalorganisms. In addition to Stanley's theory [19] of theevolution of heterotrophs as the prime cause of the Cam-brian explosion, developmental biologist Lewis Wolperthas suggested that multicellular organisms might origin-ally have emerged in conditions where food was sparselydistributed in the environment15. When no food wasavailable, a multicellular organism would be able to be-gin eating its own cells to survive until environmentalfood was available again. Cosmos may be easily con-�gured to test such a scenario.Experiments are also planned to investigate the sensit-ivity of the system to the genotype-phenotype mapping,for reasons mentioned in Section 3. At present, there are61 instructions in the Cosmos instruction set, and theseare encoded using 6 bits (giving a total of 64 di�erentpossibilities). There is therefore virtually no redundancyin the encoding, in contrast to the biological genetic codewhich encodes 20 amino acids with 64 possible codons.In one set of experiments, a reduced instruction set willbe investigated, which consists of just 21 primary unitswhich can be encoded on the genome. The full function-ality of the existing system is maintained by allowing theprimary units to form compound instructions. This issomewhat analogous to the way in which biological gen-omes encode just 20 amino acids, which, when decoded,are then assembled into a vast array of useful proteins.Some exploratory runs were conducted with a muchshorter ancestor than was used in the experiments re-ported in Section 4. The outcome of these runs was thatvery little evolution happened at all. It appears to benecessary to inoculate the system with an ancestor thatcontains a certain amount of redundancy (as was appar-ently contained in the longer ancestor used in Section 4).Indeed, this was also found to be true in Avida, for whichit has been reported that \redundancy has emerged as anecessary requirement for successful evolution" [1]. Thismay be even more true of Cosmos, as it attempts tomodel cellular organisms at the verge of a Cambrian ex-15This theory, which he named `cannibalistic altruism', was dis-cussed during a recent talk by Wolpert at the Royal Museum ofScotland, Edinburgh, on 20 February 1997.

plosion of complexity and diversity. It could be thatsupplying the ancestral cells with just a self-replicationalgorithm in the genome is not enough. Many of thenecessary genetic regulatory networks involved in theCambrian explosion of biological organisms conceivablyalready existed before the Cambrian period, so that therapid evolution of the organisms was triggered by com-ing across ways to regulate these networks and adjustingthe degree of pleiotropy between their phenotypic e�ects.To facilitate the emergence of complex organisms in Cos-mos, it may be that the ancestral genome not only has tobe large, but must also be composed of a number of dis-crete functional units. Ideas such as these are discussedin a general context by Wagner and Altenberg in [23].Throughout this paper, the issue of the importance ofremote execution of code for the evolution of parasiteshas been raised a number of times. Experiments will beconducted on Cosmos in which cells can read and executethe genomes of other cells in the system. These condi-tions would be expected to encourage the evolution ofparasites (i.e. to replicate the results observed in Tierra,Avida and Computer Zoo).As a closing remark, the Cosmos system has been de-signed and developed over the course of a year or so.When re-reading Ray's original description of Tierra [15]recently, it was of interest to note that in the �nal sec-tion, \Extending the Model", Ray suggests a number ofways in which Tierra could be extended. These include1. Making instructions expensive.2. Modifying the way CPU time is allocated.3. Separation of the genotype from the phenotype.The incorporation of each of these features in Cosmoscame about through largely independent lines of thought(Ray's suggestions having been initially overlooked), butit is satisfying to note that there is some agreement onhow to extend such systems.AcknowledgementsTim Taylor would like to thank Tom Ray and Kurt Thearling fortheir comments on the system as it was being developed. He grate-fully acknowledges support from EPSRC grant number 95306471.The facilities used for this work were provided by the Universityof Edinburgh.References[1] C Adami. Learning and complexity in genetic auto-adaptivesystems. Physica D, 80(1-2):154{170, 1995.[2] C Adami and CT Brown. Evolutionary learning in the 2Darti�cial life system `Avida'. In R Brooks and P Maes, editors,Arti�cial Life IV, pages 377{381. The MIT Press, 1994.[3] PR Cohen. Empirical Methods for Arti�cial Intelligence. MITPress, 1995.[4] P Coveney and R High�eld. Frontiers of Complexity: TheSearch for Order in a Chaotic World. Faber and Faber, 1995.

[5] R Dawkins. The Extended Phenotype. WH Freeman, Oxford,1982.[6] R Dawkins. The Sel�sh Gene. Oxford University Press, Ox-ford, 2nd edition, 1989.[7] BC Goodwin. How the Leopard Changed its Spots: The Evol-ution of Complexity. Weidenfeld and Nicolson, London, 1994.[8] JR Koza. Arti�cial life: Spontaneous emergence of self-replicating and evolutionary self-improving computer pro-grams. In C Langton, editor, Arti�cial Life III, pages 225{262. Addison-Wesley, 1994.[9] R Losick and D Kaiser. Why and how bacteria communicate.Scienti�c American, 276(2):52{57, February 1997.[10] REF Matthews. Plant Virology. Academic Press, San Diego,CA, 3rd edition, 1991.[11] RM May. Stability and Complexity in Model Ecosystems.Princeton University Press, 2nd edition, 1974.[12] J Maynard Smith. Evolutionary Genetics. Oxford UniversityPress, 1989.[13] AN Pargellis. The spontaneous generation of digital `life'.Physica D, 91:86{96, 1996.[14] RA Ra�. The Shape of Life: Genes, Development and theEvolution of Animal Form. University of Chicago Press, 1997.[15] TS Ray. An approach to the synthesis of life. In Langton,Taylor, Farmer, and Rasmussen, editors, Arti�cial Life II,pages 371{408. Addison-Wesley, Redwood City, CA, 1991.[16] TS Ray. Evolution, complexity, entropy and arti�cial reality.Physica D, 75:239{263, 1994.[17] TS Ray. An evolutionary approach to synthetic biology: Zenand the art of creating life. Arti�cial Life, 1(2):195{226, 1994.[18] J Skipper. The computer zoo|evolution in a box. InFJ Varela and P Bourgine, editors, Toward a Practice ofAutonomous Systems: Proceedings of the First EuropeanConference on Arti�cial Life, pages 355{364, Cambridge,MA, 1992. MIT Press.[19] SM Stanley. An ecological theory for the sudden origin ofmulticellular life in the late Precambrian. Proc. Nat. Acad.Sci., 70:1486{1489, 1973.[20] TJ Taylor. The COSMOS arti�cial life system. Technical re-port, Department of Arti�cial Intelligence, University of Ed-inburgh. In Preparation.[21] K Thearling. Evolution, entropy and parallel computation.In W Porod, editor, Proceedings of the Workshop on Physicsand Computation (PhysComp94), Los Alamitos, November1994. IEEE Press.[22] K Thearling and TS Ray. Evolving multi-cellular arti�ciallife. In R Brooks and P Maes, editors, Arti�cial Life IV,pages 283{288. The MIT Press, 1994.[23] GP Wagner and L Altenberg. Complex adaptations and theevolution of evolvability. Evolution, 50(3):967{976, 1996.Appendix - Parameter Settings for RunsReported in Section 4Size of Grid = 50 x 50, Max Cells Per Process = 2500, MaxCells Per Org = 16, Ancestor type: LA1, Inoculation scheme:30 x 30, Overlap Type = Overlap, Distribution Type = [RunsA&B:Land, Run C:Mixed], Distribution Max Delta = [RunA:0.0, Runs B&C:0.2], Energy Sharing Type = Shared, ApplyFlaws = true, Default Flaw Rate = 10, Mutation rate = 1 in100000 per 5 timeslices, MulticellularityPenaltyFactor = 1.0, En-ergyTokenStoreLowerThreshold = 1, NumOfEnergyToksPerGrid-PosPerSweep = 10, NumOfEnergyToksPerCollect = 10, MaxEn-ergyTokensPerCell = 500, MaxEnergyTokensPerGridPos = 200,NumOfInstructionsPerTimeSlice = 10.

