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1 Introduction

Our understanding of the evolution of living organisms, and attempts to derive general theories
of evolution, are hampered by the fact that we only have one example of life to study—life on
Earth. There are therefore many situations where we are uncertain whether a particular feature
of life is general to any comparable system of evolving self-replicators, or whether it is specific
to the biological organisms on our planet.

Within the field of evolutionary genetics, there are many situations where two or more
plausible theories offer different predictions of how evolution may unfold in a particular case. For
example, the ‘Red Queen’ hypothesis [Van Valen 73] suggests that, even in a constant physical
environment, evolutionary change will continue indefinitely. However, alternative arguments
may be constructed which lead to the opposite conclusion—that in such circumstances evolution
would eventually slow down and stop when each species reaches a local selective optimum (see
[Maynard Smith 89]). With only one example of evolution to go on, it is usually impossible to
choose between such theories on an empirical basis.

Within the last 6–7 years, a number of researchers have started investigating the idea of
creating alternative examples of evolution, in the digital medium, to assist in the formulation
of generalised theories. Such work involves the creation of a computer environment in which
large numbers of programs compete with each other for the resources required to make copies
of themselves. This research will be described in more detail in Section 2.

The following quote from the American biologist Tom Ray, who pioneered this type of
research with his Tierra system [Ray 91], demonstrates the utility of this work.

“Diverse ecological communities have emerged. These digital communities have
been used to experimentally examine ecological and evolutionary processes: e.g.,
competitive exclusion and coexistence, host/parasite density dependent population
regulation, the effect of parasites in enhancing community diversity, evolutionary
arms race, punctuated equilibrium, and the role of chance and historical factors in
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evolution. This evolution in a bottle may prove to be a valuable tool for the study
of evolution and ecology.” Tom Ray1

Tierra and similar programs are sometimes referred to as Artificial Life (or A-Life) sys-
tems. “A-Life” is a somewhat poorly defined term, but, broadly speaking, it describes an
inter-disciplinary field of research which seeks to further our understanding of living organisms
through the analysis, simulation and synthesis of processes which appear to be necessary for
the emergence of life. A-Life research therefore covers experimental and theoretical work in
areas such as evolution, self-organisation and complexity. As the field has developed in the last
decade, new theories relating self-organisation and complexity studies to evolution have been
proposed—Tierra and similar systems may help us to refine these theories as well as those of
more traditional evolutionary genetics.

It is my intention to create a software environment which supports evolving self-replicating
programs in the same spirit as Tierra and other existing systems. However, many of the details
of my environment will be radically different to anything that has been implemented before.
These differences stem from a desire to create a system with mechanisms which correspond
more closely to those of biological self-replicators (although still greatly simplified). They will
enable the system to address a number of questions which existing systems cannot. These include
questions relating to the interactions of embryology, developmental processes and multicellularity
with evolution, and also questions relating to life-cycles and life-span. The system, called COSMOS

(standing for COmpetitive Self-replicating Multicellular Organisms in Software), is described in
Section 3.

The main purpose of COSMOS is therefore to provide a better tool for studying evolution,
ecology and embryology. In addition, there are a number of novel technical features of the
system, an analysis of which will be of relevance to certain fields of computer science. These
features are described later in the paper, and summarised in Section 6.

A discussion of some of the more general ideas and motivations behind my research is pre-
sented in [Taylor 96b]. The following section provides a brief introduction to the existing work
in this area.

2 Review of Field

Along with the work of Tom Ray and colleagues with their Tierra system (e.g. [Ray 91],
[Ray 94]), a number of other systems have also been developed. These include the Avida system
of Chris Adami and Titus Brown [Adami & Brown 94], and the Computer Zoo system written
by Jakob Skipper [Skipper 92]2.

The basic idea of these systems is that a virtual operating system is provided, complete with
a simple machine language. The machine language instructions are designed to be robust under
the mutation and evolution of programs written in the language. This robustness is achieved
chiefly through the use of relative or template-driven3 addressing in branching instructions

1Taken from a general introduction to Tierra written by Tom Ray and available on the WWW at
http://www.hip.atr.co.jp/~ray/tierra/whatis.html.

2A recent paper [Pargellis 96] has described work on another system derived from Tierra. However, this
research was specifically looking at the spontaneous emergence of self-replicating programs in a ‘sea’ of random
instructions, rather than at the subsequent evolution observed.

3With template-driven branching, a branching instruction is followed by a template (a sequence of bits). The
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(rather than absolute addressing), and by avoiding the use of explicit memory addresses as
operands to instructions. In such an environment, the percentage of functional programs in the
space of all possible programs is greatly increased, and the chances of mutating a functional
program and coming up with another program that also works are much higher.

Although the details of these systems differ somewhat4, the general mode of operation is
the same. An “evolutionary run” commences with the introduction of an ancestor program into
the otherwise empty memory. The ancestor program has been hand-written by the researcher
to produce another copy of itself in the computer’s memory when the program is run. A
small element of stochastic behaviour is usually associated with the execution of the machine
instructions, e.g. an add instruction which usually adds one to its operand may occasionally
add zero or two instead, or a copy instruction may sometimes mutate a byte of the data it
is copying. Alternatively, the programs may be subject to point random mutations at a given
low rate. In either of these ways, as a run proceeds variations of the ancestor program begin to
appear. If a variation retains the ability to produce a copy of itself, then it too may be retained
in the population of programs over a number of generations. As the available memory begins to
fill, some sort a ‘reaper’ operation is performed to kill off a number of the programs.

A number of interesting results have been obtained from such evolutionary runs, for example
the appearance of “parasites”—short pieces of code which run another program’s copying pro-
cedure in order to copy themselves. It may be true to say that most of the interesting behaviour
that has been seen to evolve has done so because facilities for these behaviours were engineered
into the original language specification. For example, the fact that parasites emerge is a little
less surprising when the mechanisms of template-driven branching are considered. However,
what all of these studies have demonstrated is that it is possible to build a robust operating
system in which non-trivial self-replicating computer code can evolve.

Kurt Thearling and Ray have also reported work in which they extended the standard
Tierra system to allow programs to run parallel processes [Thearling & Ray 94], [Thearling 94].
(Throughout this paper I will refer to this work as Parallel Tierra). This has used a shared
memory model of parallelism, and experiments so far have resulted in the evolution of only
SIMD (Single Instruction, Multiple Data) programs. The evolution of more complicated forms
of parallel program is one of the major issues I wish to address with COSMOS. More details are
given in Section 3.

John Koza has proposed a system of self-replicating programs using a slightly different
approach [Koza 94]. Koza’s programs are boolean trees whose nodes may be standard logical
functions (i.e. and, or, not) or a number of extra functions which not only produce a boolean
result but also have side effects which act upon the program itself or upon other programs in
the computer’s memory. For example, there is an add function which will search the rest of
the memory for a program matching a given template, and, if one is found, will have the side
effect of substituting this new program in the position where the add instruction resided in the
original program.

One result of this approach of using boolean functions with side effects is that a program
may perform a boolean calculation as well as having the side effect of producing another copy

operating system will search for the nearest matching template in the rest of the code and move the instruction
pointer to that position.

4Programs in Avida and Computer Zoo also have the notion of a location in a 2D space (in Computer Zoo the
programs can actually move around this space). This notion was introduced mainly to provide a form of genetic
isolation, and also to facilitate efficient implementation on parallel hardware.
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of itself somewhere else in memory. Koza encouraged his programs to perform specific boolean
calculations by imposing a fitness function on the system—a program has a good chance of
proceeding to the next generation only if it is able to self-replicate and performs well on the
target boolean function5. In this respect, Koza’s system is very similar to Avida, where programs
can gain more CPU time by successfully completing user-specified tasks.

While it is perfectly possible for a program on, say, the Tierra system to perform other
functions as well as reproducing itself, this hasn’t been observed yet, presumably because there
is no obvious way in which a program’s fitness may be increased by doing tasks which do not
affect its ability to reproduce. In fact, we might expect any such ‘additional’ functionality to
actually decrease the program’s fitness, as it would have the effect of wasting CPU time which
could otherwise have been utilised by the program to produce more copies of itself.

In this important sense, Avida and Koza’s system differ from Tierra and Computer Zoo; the
latter pair of systems allow programs which perform complicated functions which may not be
directly related to self-reproduction, but only if, by however roundabout a route, such functions
in some way increase that program’s longevity, fecundity or copying-fidelity relative to the other
programs in the system (i.e. increase the program’s fitness). In contrast, in Koza’s system and
in Avida there is actually a specified function (or set of functions) which the programs must
perform as well as having to be able to reproduce. In this way, there are effectively two fitness
measures, the former being completely unrelated to a program’s ability to self-replicate.

The reasons for Koza’s and Adami et al.’s decisions to build such systems are not explicitly
stated in their papers, but presumably stemmed from a desire to incorporate the potential
evolutionary power of self-replicating entities within a framework where the evolving programs
were actually performing a task specified by the researcher so that they were doing something
useful as well as reproducing. This may well be a promising line of research, but the result
of trying to tailor the system to perform a user-defined task is that it becomes less suited for
studying general principles of evolution. It is also unclear that effectively imposing two fitness
functions on a program will result in particularly efficient solutions for either task. The subject
of adding extra functionality to self-replicating programs is an important issue, and is discussed
further in [Taylor 96b].

In addition to the systems already described, this section would be incomplete without
mention of the ideas of Douglas Hofstadter, some ten years ahead of Tierra [Hofstadter 79].
Hofstadter proposed a system called Typogenetics, in which he “tried to capture some ideas
of molecular genetics in a typographical system”. In this system, a strand of letters encoded
a sequence of operations (such as copying, cutting etc.) which were to be performed upon the
strand itself. The Typogenetics system was later developed and analysed by Harold Morris
in his PhD dissertation [Morris 88], in which he showed that it was possible to produce several
types of strand which were capable of self-replication. If the interpretation and processing of
strands is handled on a computer, then we have a system of self-replicating computer programs,
albeit with a somewhat different representation and interpreting process to those used in the
other systems described in this section.

The research that has been described in this section can be divided into three categories
depending on the type of representation employed for the self-replicators:

5The set of primitive computational entities from which programs may be constructed comprised not only
eight functions (some of which have been described), but also three terminals, corresponding to three boolean
input values. In any given evolutionary run, all the programs are tested for their performance on a specific
three-argument boolean function—the target function.
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1. Functional Representation—Koza’s work

2. Procedural Representation—Tierra, Avida, Computer Zoo

3. Other Formal Systems—Typogenetics

Although functional representations do have advantages in some applications of this type (for
a good discussion of these, see [Fontana 91]), they also have a number of weaknesses. By their
very nature, their prime action is to perform a particular computation; any task not directly
relating to the computation (such as allocating memory and copying data from one area of
memory to another) has to be accomplished by allowing functions to have side-effects (which by
itself means that the language is no longer purely functional). Additionally, with any functional
representation one has to choose a set of terminal nodes to be used. This choice may have
a profound effect on what types of program may evolve, and yet there are few guidelines for
actually making this choice.

Consideration of the mechanisms for decoding DNA in a cell suggests that procedural repre-
sentations are probably a better analogy (particularly parallel procedural programs). The type
of formal system used in Typogenetics could probably also be classified as a procedural rep-
resentation, albeit of a fairly unusual kind. While the Typogenetics representation does have
some good points, it is fairly inflexible in its current form (e.g. it does not allow for interac-
tions between different strands such as exchange of genetic material or general communications).
These features could be added, but can perhaps be incorporated more naturally into a more
usual procedural representation.

For these reasons I decided to use a procedural approach when developing the language in
which COSMOS programs will be written. The language is called REPLiCa (Robust Evolvable Pro-
duction Language for Cosmos), and, as described in Section 3, although basically a procedural
language, it does contain some unusual features.

3 Description of Central Ideas

A full description of the COSMOS system and REPLiCa programming language is given in
[Taylor 96a], and the reader is referred to that document for details. My primary motivation for
writing COSMOS was to build a tool which would allow me to investigate the ways in which the
path of evolution is affected when individuals must go through a process of development from
single-celled zygote to multicellular adult. A related question is how multicellular organisms
may have evolved from unicellular ones in the first place, and why they are evolutionarily stable
over their simpler ancestors. Many features of the system were designed with these questions
in mind. Other features address different topics (such as self-organisation, local interactions
between cells in an organism, and co-evolution), many of which are actually related in some way
to these central questions.

The most important feature of COSMOS which distinguishes it from existing systems is that it
has been designed specifically to look at the evolution of MIMD (Multiple Instruction, Multiple
Data) parallel programs. I am particularly interested in investigating the circumstances under
which parallel self-replicators may evolve from and coexist with simpler, serial ancestors, and I
will therefore begin initial experiments with a hand-written serial self-replicator. I consider these
serial self-replicating ancestors with which the system is inoculated to be somewhat analogous
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to the unicellular eukaryotic biological organisms that are thought to have been abundant on
Earth prior in the Vendian period of geological time, immediately before the emergence in the
fossil record of macroscopic multicellular organisms and the ‘Cambrian explosion’ that followed.
Following this analogy, parallel programs in COSMOS may be compared to multicellular organisms.
Instructions are included in the REPLiCa language to enable a program to dynamically create
multiple processes, so that, by using a process of development from serial program (single-
celled zygote) to parallel program (multicellular adult), evolution can explore the possibilities
of parallelism.

In terms of implementational issues, three of the most important features that distinguish
COSMOS from existing systems are the ‘tag’ system (involved in inter-process communications
within a single program), the inter-program message passing system, and the energy token
system. Inspiration for these features was drawn from biological analogies, although practical
considerations limit the extent to which such analogies hold. These and other major differences
between COSMOS and Tierra are described below. For each feature I indicate some of my reasons
for chosing a different approach to existing systems. Full details of these features may be found
in [Taylor 96a].

Before continuing, I should clarify some of the terms which I occasionally use in the following
text. I sometimes use biological terms when describing COSMOS as they tend to be more concise
and therefore contribute to the readability of the paper. While these biological terms suggest the
analogy that I had in mind when designing COSMOS, the analogies are certainly not exact—many
simplifications and modifications obviously have to be made when designing such a system. With
this is mind, the following table lists the meanings I wish to attach to some biological terms in
the present context.

Term Meaning in context of COSMOS

Cell A single process in an organism. This term encompasses
the host code and any foreign code that may be present,
together with associated working memory, buffers and reg-
isters.

Unicellular An organism containing a single cell (process), i.e. a serial
program.

Multicellular An organism containing multiple cells (processes), i.e. a
parallel program.

Organism A single program, which may be unicellular or multicel-
lular.

Table 1: Definitions of some terms used in this paper.

1. Tag System.

The tag system of COSMOS has no equivalent in Tierra. It was designed specifically to
allow cells in a multicellular organism to be able to influence which sections of code were
being executed in neighbouring cells, thereby promoting cell specialisation and MIMD par-
allelism. The design of the tag system was inspired by the processes of chemical signalling
between cells in biological organisms.

A program within the COSMOS system is a piece of code written in the REPLiCa program-
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ming language. REPLiCa programs are divided into sections called tag blocks which are
each preceded by a precondition expression which must be satisfied before the tag block
may be executed. These preconditions relate to the presence or absence of tags in the
process’s tag store. A process, or neighbouring processes in a parallel program, may add
or delete tags from this store by issuing suitable instructions. As the contents of the tag
store changes, different tag blocks in the code become activated and deactivated. In this
way, a number of different processes in a parallel program can influence which section of
code (tag block) is being executed by any particular process, and a complex regulatory
network can be formed.

2. CPU Time Allocation.

In COSMOS, each cell on a processor is allowed to execute an equal number of instructions
during each time-slice. However, each time-slice costs the cell one energy token from its
store. At the beginning of a time-slice sweep through the system, the COSMOS operating
system makes a number of energy tokens available in the environment. It is the respon-
sibility of individual programs to then collect these tokens (by issuing the appropriate
instruction) and store them so that they may be exchanged for CPU time at a later date.

If the number of energy tokens stored by a program falls below a given threshold, the
program is killed off. Similarly, when the system’s RAM starts filling up, programs are
killed off with a probability inversely proportional to the number of energy tokens they
have stored. It is therefore a prime importance that a program maintains a certain level
of energy tokens in the stores of its constituent processes.

This mechanism was designed so that COSMOS may more closely resemble the biological
case where energy is a commodity which has to be collected, stored and used. It opens up
the possibility of having coexisting programs which operate on a range of different time-
scales; one program may be very short and collect just enough energy tokens to perform
self-replication, whereas another program may be much longer, and collect large numbers
of energy tokens over a much longer time to enable it to perform more tasks on the way
to reproducing.

In Tierra, programs are given CPU time according to their length. A separate ‘reaper
queue’ mechanism in employed to govern cell death so that programs do not have direct
control of their lifespans. Such a reaper mechanism is redundant in COSMOS, where cell
death is dictated by the amount of energy stored in the cell. This process imposes fewer
constraints on the lifespan of cells and organisms, and will enable COSMOS to investigate
questions relating to the interactions between lifespan and evolution which existing systems
cannot address.

3. Read, Write and Execute Privileges.

Tierran programs only have write access within their own ‘cell membrane’ (apart from
when they are in the process of creating a daughter cell, when they also have write access
to a specific additional chunk of RAM). A similar situation exists in COSMOS. However,
Tierran programs have read and execute privileges to all areas of RAM, so that they
can directly examine the code of other programs, and even execute this code. COSMOS

cells, on the other hand, only have direct read and execute privileges within their own
cell membrane, and must rely on the system’s communication facilities to interact with
other cells. For communication with other processes belonging to the same program, the
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tag system is used, as described above. For communication between different programs a
different mechanism is used, which is described next.

4. Exchange of Messages and Genetic Information.

The COSMOS mechanisms for the direct exchange of messages and genetic information have
no parallel in Tierra. This difference is linked to the differences in read, write and execute
privileges described in the previous point.

Any program may compose a message (which can be an arbitrary string of program in-
structions) and then broadcast this message marked with a particular identification number
(the messageID). Any program may also receive all broadcast messages of any specified
messageID. Messages received in this manner are copied into a special buffer owned by the
receiving program, and may then be inspected by the program.

Although this mechanism doesn’t really have a parallel in biological systems, it is an
attempt to allow programs to develop arbitrary channels of communication in much the
same way that biological organisms can communicate arbitrary messages using media such
as light and sound. It will almost certainly be the case that programs within COSMOS will
not evolve to make even limited use of these facilities for a very long time. However, the
general design philosophy has been to make the system as flexible as possible and to try
to model as many features of biological systems and their physical environments at least
in a very abstract way, so as not to constrain the system’s evolutionary potential.

There is a further twist to this mechanism. Each program itself has an associated identifi-
cation number (the cellID). If a program then receives messages which have a messageID
which matches its cellID, then these messages are treated as equivalent to the host code—
if the messages contain tag blocks, then their code may be executed within the host cell
if their precondition expressions are satisfied. In this way, genetic material may also be
transferred between programs. A number of evolutionary options are available to such
host cells—they may develop various defences against such exchanges if the foreign ge-
netic material is detrimental to its fitness, or conversely may incorporate the material into
its own genome if it is beneficial. Such scenarios are discussed in [Taylor 96a]. Again, the
general philosophy in the design of these mechanisms has been to allow the evolutionary
process some of the freedoms enjoyed by biological organisms and to prevent it from being
unduly constrained.

5. Division Process.

This point is related to the previous two. As a COSMOS cell only has write access within
its own cell membrane even when it is composing a copy of itself, this copy must first
be composed within the parent cell. The copy is then issued en masse to a new memory
location.

In Tierra a cell first gets a new block of memory, then writes the copy into this memory,
and finally ‘divides’, signalling that the new memory is now a new organism in its own
right.

There isn’t really a great deal of difference between the two mechanisms, but an advantage
of the COSMOS method is that it allows an organism to reproduce (i.e. to create a child
organism) and to grow (i.e. create a new cell which remains a member of the multicellular
organism) using exactly the same technique.

In contrast, programs in Parallel Tierra grow (i.e. initiate parallel processes) by issuing a
split command. The effect of this is to add an additional CPU to the processor structure
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of the program, although all processes still read the single original copy of the program’s
code. This mechanism is natural for a parallel machine architecture with a shared program
space, as used with Parallel Tierra. In COSMOS memory is not shared across processes in
a parallel program, so that such a program must actually physically copy itself into a new
process in order to run in parallel. With this type of architecture, it seems preferable that
the bulk of such copying work should be performed by the cells themselves rather than by
the COSMOS operating system.

Additionally, having very similar mechanisms for growth and reproduction of cells is
arguably more analogous to the way that multicellular biological organisms may have
evolved.

6. Topology of Parallel Programs.

It has already been explained that processes in a parallel program may pass tags to each
other. However, it is not the case that any process can communicate with any other process
within the program in this way. Instead, each process maintains a list of neighbouring
processes with which it can exchange tags. These lists therefore define a topology for the
processes within a parallel program. Additionally, a process may also change the contents
of this list, so that it can ‘migrate’ to a different position within the program.

This feature was introduced as an attempt to model pattern formation and the physical
development of biological organisms from embryo to adult. No existing systems have this
type of neighbourhood mechanism, so COSMOS will therefore be the first tool of its kind
which is able to simulate non-trivial spatial pattern formation during the developmental
processes.

7. Local Competition.

One of the problems that has been observed with the process of evolution in Tierra is
that it suffers from premature convergence due to global interactions between programs
([Adami & Brown 94]). Chris Adami and Titus Brown sought to overcome this problem in
their Avida system by giving each of the programs a location on a two dimensional toroidal
grid. Programs can only interact with other programs occupying nearby grid positions,
thereby slowing down the rate of propagation of evolutionary changes throughout the total
population and promoting heterogeneity.

COSMOS addresses this problem with the use of localities. A single locality is a collection of
real or virtual processors on which programs may grow, communicate and replicate freely.
As far as a program is concerned, the combined RAM of all the processors in the locality
is a single, continuous and homogeneous resource within which it competes with other
programs. A number of different localities may exist within COSMOS, and there is very
little interaction between them.

The only time when information may be exchanged between localities is when a program
is about to reproduce. Normally, this will result in a new child organism appearing in the
same locality as the parent. However, this child will occasionally be placed into a different
locality at random. In this way, an organism’s descendants may end up in many different
localities, although the rate of dissemination is slow.

8. Size of Instruction Set.

The REPLiCa instruction set is about twice as big as that of the Tierran language. This
increase has been necessary to accommodate the additional functionality of the system. It
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remains to be seen what the effects of this will be.

9. A Serial Ancestor Program.

In Parallel Tierra, the ancestral program was itself parallel. In COSMOS it is hoped that
parallel programs may evolve from an initial serial ancestor, as described earlier. The
probability of a mutation effecting such a transition is not too low, because the mechanisms
for growth and reproduction are very similar. COSMOS may therefore be used to look
at questions concerning the evolution of multicellular organisms from unicellular ones
and, in particular, to investigate the advantages multicellular organisms may have in an
evolutionary sense over their simpler ancestors.

10. Memory Model.

COSMOS uses a distributed memory model of parallelism, for both practical and theoretical
reasons. On the practical side, such a model will allow the system to run efficiently on
many different types of machine, which may be stand-alone serial or parallel machines, or
networked clusters. On the theoretical side, distributed memory is a closer analogy to the
biological situation than is shared memory.

Additionally, the tag system employed by COSMOS should promote the emergence of MIMD
programs. This is because the activation and deactivation of sections of code (tag blocks)
in any particular process in a parallel program is controlled by the actions of that process
and a number of its neighbours. In this way, different processes within the program are
unlikely to be executing the same section of code at the same time.

Parallel Tierra uses a shared memory approach, and, although it is theoretically capa-
ble of supporting MIMD programs, has so far only demonstrated the evolution of SIMD
programs.

11. Memory Addressing Scheme.

COSMOS cells use a local addressing scheme which applies only to code and messages be-
longing to them. They have no knowledge of their location (or that of other cells) in the
global addressing scheme of the processor. This is in contrast to Tierra, which uses a
global addressing scheme.

Having incorporated the other features described above, there seemed little point in letting
individual programs worry about absolute addressing; the message passing systems should
be sufficient to cope with communications between processes and programs, and the use
of local addressing also simplifies the process of creating a system which can support
programs which are subject to mutation and evolution in a robust manner.

The main purpose of COSMOS, as mentioned earlier, is to provide a tool for studying questions
relating to evolution, ecology and embryology. A number of specific questions are suggested in
[Taylor 96a], and I hope to collaborate with researchers with a more biological background in
order to address further topics.

In addition, there are a number of novel technical features of the system, an analysis of
which will be of relevance to certain fields of computer science. In particular, the REPLiCa pro-
gramming language uses a novel method for determining control of flow (the tag system), which
is somewhat reminiscent of a production system and also has similarities with the PROLOG
programming language. My work will include an analysis of this type of language (I use the
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term “production language”6), and, in particular, a comparison of the REPLiCa language with
PROLOG and production systems. The COSMOS system also has relevance to subject of par-
allelisation of computer code. An analysis of the evolved parallel programs may suggest novel
forms of parallelisation for other computer algorithms.

4 Work So Far

• Extensive review of existing work on self-replicating systems, developmental models, self-
organisation and complexity, together with familiarisation with relevant topics in genetics,
evolution, embryology etc.

• A literature review and discussion of some general ideas relating to my research were
presented in [Taylor 96b].

• A concrete design for the COSMOS system has now been decided upon and presented in
[Taylor 96a]. Implementational issues have also been decided (e.g. the main system will
be written in C++ (using the gnu compiler), with MPI providing message passing services
between physical processors).

• I have attended 3 courses at the Edinburgh Parallel Computing Centre (EPCC), and
am now familiar with approaches to designing parallel programs and the use of message
passing systems (specifically MPI and PVM). These courses have also familiarised me
with methods of building applications which are capable of running both on the Cray-
T3D parallel computer and on networks of serial computers (including Sun workstations).

• Contact has been made with a number of researchers in the field, including Tom Ray and
Kurt Thearling. They seem interested in my work and will hopefully provide comments
as things develop.

• I am also in the process of trying to establish contact with more researchers with a biological
background, particularly at the Institute of Cell, Animal and Population Biology (ICAPB)
here at Edinburgh University, and at Sussex and Oxford Universities.

5 Future Targets

5.1 Implementation and Investigation of REPLiCa language

In [Taylor 96a] I have outlined a number of features of the REPLiCa language which I would like
to experiment with in the initial stages of this research. This is in order to see how the tag
system works in practice before proceeding with the rest of the COSMOS system.

6My definition of a “production language” is somewhat vague at present. I use the term to refer to a language
where the flow of control is governed in a manner similar to a production system, but where each ‘rule’, when
‘fired’, is capable of performing arbitrary computations as well as potentially causing other ‘rules’ to be fired.
During the course of my work I hope to refine this definition and decide whether “production language” is a useful
and appropriate term.
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5.2 Search for Analytical Tools

I need to review the evolutionary genetics and complexity literature to look for suitable measures
for assessing evolutionary runs and for quantifying evolution. Amongst other things, I need to
decide upon a suitable definition of complexity for this system, so that I can meaningfully ask
questions such as “Does evolution produce complexity?”.

5.3 Implementation of Remaining Core System

This should be fairly straightforward after the REPLiCa interpreter has been written, as a detailed
design has already been decided upon [Taylor 96a].

5.4 Final Design and Implementation of Monitoring Tool

The core COSMOS system will run as a stand-alone application. In addition, a separate monitoring
tool, much like a debugger, will be written to enable a user to inspect the progress of an
evolutionary run whilst it is happening. The details of this tool remain to be decided. I plan to
write the tool in Java to take advantage of its powerful platform-independent window and GUI
classes.

5.5 Running experiments

In [Taylor 96a] I have outlined a number of experiments to be performed. Some of these are just
concerned with testing the system’s sensitivity to various parameter values and to other fairly
arbitrary design decisions, while others address more interesting questions about how evolution
is proceeding.

As this research progresses I plan to make contact with more people who are actively working
in evolutionary genetics and related fields, who may be able to suggest further questions which
COSMOS can be used to address.

5.6 Installation of COSMOS on the Cray-T3D

It is my intention to write COSMOS in a platform-independent way right from the beginning, so
that the source code may be trivially ported from a Sun environment to the Cray-T3D parallel
computer at EPCC.

After obtaining some initial results from runs on networks of Sun workstations, I will apply
for time on the Cray so that I can perform some more ambitious experiments.

5.7 Submission of work to conferences and journals

There are many relevant conferences and journals to which I would like to submit my work. In
the timetable presented at the end of this section I have included submissions to a number of
these, in the hope that if this is in writing I may be more likely to actually meet the deadlines!
Obviously this list only includes conferences which have been announced at the time of writing.
Even so, there are already a large number of relevant conferences being held over a fairly brief
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period of time, so it is unlikely that I will actually have the time to submit to all of them (or the
money to travel to them). Decisions of which to submit to will be made closer to the submission
deadlines. The details of dates and locations are as follows:

• Third International Conference on Artificial Neural Networks and Genetic Algorithms
(ICANNGA’97) Norwich, UK: 2-4 April 1997 (Submissions deadline 31 Aug 1996)

• “Evolutionary Computation” Journal: Special Issue on Evolutionary Methods for Program
Induction. To be published Spring 1997 (Submissions deadline 6 Sep 1996)

• 1997 IEEE International Conference on Evolutionary Computation (ICEC’97) Indianapo-
lis, USA: 13-16 April 1997 (Submissions deadline 1 Nov 1996)

• First International Workshop on Frontiers in Evolutionary Algorithms (FEA’97) USA: 2-5
March 1997 (Submissions deadline 15 Dec 1996)

• International Work-Conference on Artificial and Natural Neural Networks (IWANN’97)
Lanzarote, Canary Islands: 4-6 June 1997 (Submissions deadline 15 Jan 1997)

• International Joint Conference on Artificial Intelligence (IJCAI97) Nagoya, Japan: 23-29
August 1997 (Submissions deadline 21 Jan 1997)

• Fourth European Conference on Artificial Life (ECAL97) Brighton, UK: 28-31 July 1997
(Submissions deadline to be announced)

• Artificial Life VI (ALife6): Details to be announced.

• Artificial Life journal: (published quarterly).

5.8 Writing up

A grim task, but someone has to do it! Actually, if I manage to submit papers to most of the
conferences and journals listed in the previous section, much of this work can be incorporated
into the final thesis.

5.9 Proposed Timetable

The schedule on the next page is an initial estimate of the timetable for this research.
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1995–
1996

Q4, Q1, Q2 Literature survey. Design of COSMOS system.

1996 Q3 Implementation of core COSMOS system. Experimentation with
REPLiCa programming language. Review of possible analyti-
cal techniques to be used. Preliminary experiments. Contact
with evolutionary biologists. Submission to ICANNGA’97 and
special issue of “Evolutionary Computation”.

1996 Q4 Final decisions on the main analytical techniques to be used
for assessing evolutionary runs. Design and implementation
of monitoring system. Experiments with parameters and arbi-
trary features of system, and possibly more experiments with
REPLiCa language. Start looking for new experiments to per-
form in collaboration with other researchers. Submission to
ICEC’97, FEA’97, IWANN’97, IJCAI’97.

1997 Q1 Experiments with evolutionary questions. Refinements to sys-
tem. Start of large-scale analysis. Application for time on
Cray at EPCC. Continue looking for new experiments in col-
laboration with other researchers. Submission to ECAL’97.

1997 Q2 Installation of system on Cray. Continue looking for new ex-
periments in collaboration with other researchers. More anal-
ysis. Start of runs on Cray?

1997 Q3, Q4 More runs on Cray. More new experiments? Submission of
work to ALifeVI and to “Artificial Life” journal.

1998 Q1, Q2, Q3 Write up.

6 Likely Outcome

By the end of this research project I will have made contributions to the following areas:

1. Theoretical issues of evolution, ecology and embryology. COSMOS will be able to add to
findings of existing systems, and also to tackle many questions which existing systems
have not been able to. In particular, COSMOS will be able to address questions of how
developmental processes affect the path of evolution, and in what ways multicellular or-
ganisms may have evolved incrementally in such a way that they are evolutionarily stable
over simpler unicellular organisms.

2. Automatic program induction. Most current research on evolutionary approaches to au-
tomatic program induction uses LISP-like representations. COSMOS uses a very different
representation, and is also one of a very small number of systems which can produce
parallel programs by evolution.

3. Production languages. The REPLiCa programming language is an implementation of what I
call a Production Language. My work will include an analysis of the dynamics of this type
of language, and a comparison of the REPLiCa language with PROLOG and production
systems.

4. Parallelisation of computer code. An analysis of parallel programs evolved in COSMOS may
be able to suggest novel forms of parallelisation. This knowledge may be transferable to
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the design of other parallel algorithms.
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