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Abstract

This paper describes work I intend to pursue over the course of my PhD (although it
presents a discussion of general ideas rather than a detailed research proposal—that
will come later). My primary research interest is in the study of evolutionary processes
through the use of computational models. In particular, I intend to study evolution in
systems of self-replicating programs, especially those in which there is a developmental
process to map genotypes to phenotypes. The reasons for this choice, and discussion of
the analogy I wish to draw between the proposed digital system and existing biological
systems, are explained. I believe that this work will be of interest both from the
perspective of making some contribution to our understanding of biological evolution
and also from the perspective of the evolution of computer programs in their own right.
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Chapter 1

Introduction

The three characteristics that determine the long-term survival1 of a self-replicating en-

tity in competition with other self-replicators in an environment with limited resources,

are:

• longevity

• fecundity

• copying fidelity

(from [Dawkins 76]). This is just formalizing the obvious; that those entities which

exist for a long time, produce many copies of themselves, and can produce these copies

with few mistakes (all relative to the other entities in the competition) will be the ones

whose numbers grow in successive generations and who will come to dominate the

system.

If the process of creating a new individual by copying an existing one is not completely

reliable—if there is always a chance that a mistake will be made and that the copy will

be slightly imperfect, then evolution of the self-replicators will occur; there is a slim

chance that a new slightly imperfect copy of a self-replicating entity thus formed may

actually be slightly better than its parent in an evolutionary sense2.

1 That is, the survival of a chain of descendants throughout many generations.

2 That is, it may have greater longevity, fecundity or copying-fidelity.

1



2 CHAPTER 1. INTRODUCTION

According to neo-Darwinist theory3, biological evolution has proceeded from the very

first self-replicating molecules to produce all forms of life we see today, solely by the

principle of the differential survival of slightly imperfect self-replicators which are com-

peting for a limited resource of molecules necessary for their replication.

Although many people tacitly accept the neo-Darwinist theory, I suspect that a large

number of them (myself included) find it hard to imagine that such a simple process

is responsible for the vast spectrum of extraordinarily complicated and well-adapted

biological species alive today. This is not to say that I think the theory is wrong,

merely that I have to admit some limit to my powers of imagination.

One reason for this shortcoming may simply be the sheer scale of the numbers involved—

billions of self-replicating entities competing and evolving in parallel over the course of

billions of years. There is also the fact that evolution is an incremental process, that

over this huge number of individuals and years any change in the self-replicating entit-

ies that has been retained, has, by definition, led to an improvement in the comparative

performance of these entities. As John von Neumann noted:

“living organisms are very complicated aggregations of elementary parts,

and by any reasonable theory of probability or thermodynamics, highly im-

probable...[however] if by any peculiar accident there should ever be one of

them, from there on the rules of probability do not apply, and there will be

many of them, at least if the milieu is reasonable” quoted from [Koza 94]

However, even if we can accept this account, there are still many features of observed

biological species that are not easily explicable. For example, nearly all modern self-

replicators are contained within cells, which are extremely complicated survival ma-

chines. On top of this, many species of self-replicators also go through a remarkably

time- and energy-consuming process of development and differentiation into multicellu-

lar organisms. In human beings, for example, a single zygote divides and differentiates

into approximately 1015 cells of over 200 different types. In humans, as in many other

species, this process of development takes decades before the organism reaches adult-

hood and is finally able to achieve its goal of replicating its genome.

3 Neo-Darwinism is a synthesis of Darwin’s theory of natural selection and modern population genetics.
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[Dawkins 82] has suggested some compelling reasons why developmental processes may

be beneficial, and why organisms which adopt a growth/reproduction/death life cycle,

where each newly-created individual is forced through a single-celled ‘bottleneck’ may

be better equipped for evolving adaptive complexity.

Following Dawkins’ line of reasoning, it is certainly easy to see that a single mutation

affecting the process of development of an individual organism has, in principle, the

scope to alter anything from, at one extreme, a small detail of the adult phenotype to,

at the other extreme, the entire organism, depending on whether the mutation affects

the late or early stages (respectively) of development. It is also not too hard to imagine

that a mutation acting upon a developing organism has a fair chance of producing a

change of phenotype that in some way ‘makes sense’ to the design of the organism as a

whole (e.g. a mutation in the genome of a giraffe, say, may cause an extra vertebra to

be produced in the neck). These two mechanisms both produce a leveraging effect on

the power of a single mutation, creating an environment where macromutations, and

not only this, but sensible macromutations, will be relatively common.

Dawkins’ argument is that development can produce complex organs and behaviour

patterns, and complex organs and behaviour patterns are favoured in arms races against

other species. However, he warns that:

“We must beware of the heresy of ‘biotic’ adaptationism ([Williams 66]).

We have seen that recurrent reproduction life cycles, i.e. ‘organisms’, make

the evolution of complex organs possible. It is all too easy to treat this as

a sufficient explanation for the existence of organismal life cycles, on the

grounds that complex organs are, in some vague sense, a good idea... The

Darwinian must begin by seeking immediate benefits to genes promoting

this kind of life cycle, at the expense of their alleles.” (pp. 262-3)

“A complex developmental sequence has to have evolved from an earlier

developmental sequence which was slightly less complex.” (p. 258)

It is my intention to study the evolution of self-replicating entities in a digital medium,

in which the “genome” of these entities is not a direct representation for a computer

program which can reproduce itself, but rather a description of a developmental sys-
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tem by which a self-replicating computer program may be constructed using a recipe

contained on the genome. It is hoped that the results of such research may be of

interest to evolutionary biologists, both in suggesting advantages of organismal over

non-organismal life cycles, and in suggesting ways in which complex developmental

sequences may have evolved cumulatively from simpler sequences. Additionally, it is

anticipated that the results will be useful from the point of view of studying the evol-

ution of computer programs in their own right, particularly through the comparison of

performance of such developmental systems to more traditional genetic programming

and self-replicating approaches.



Chapter 2

An Overview of Related Work

Within the last few years a number of researchers have begun to look at some closely

related issues. Below I present a summary of what I believe to be the most important

results.

The research described in this chapter divides into three categories. One distinct

category is work relating to the study of self-replicating computer code1. The other

two categories are fairly closely related to each other; one is the study of developmental

systems on computers, and the other is the study of self-organization.

2.1 Research with Self-Replicators

2.1.1 Description of Existing Systems

The motivation underlying most of the work with self-replicating code is to create a

digital analogy to the very early stages of biological evolution. Probably the best known

work with self-replicating computer code has been produced by Tom Ray and colleagues

with their “Tierra” system (see [Ray 91]). Similar systems have been described by

Chris Adami and Titus Brown (the “Avida” system [Adami & Brown 94]), and by

Jakob Skipper (the “Computer Zoo” [Skipper 92]).

1 By “self-replicating” I mean code which, when executed, will cause a copy of itself to be created at
some other position in the computer’s memory. This is in contrast to, for example, a “chromosome”
used in a standard genetic algorithm, which generally does not represent a computer program and
cannot reproduce itself, instead having to rely on the algorithmic engine to copy it if it is deemed
to have sufficient ‘fitness’. By the same token, I do not regard cellular automata as self-replicating
either.

5
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The basic idea of these systems is that a virtual operating system is provided, complete

with a simple machine language. The machine language instructions are designed to

be robust under the mutation and evolution of programs written in the language. This

robustness is achieved chiefly through the use of relative or template-driven2 addressing

in branching instructions (rather than absolute addressing), and by avoiding the use

of explicit memory addresses as operands to instructions. In such an environment,

the percentage of functional programs in the space of all possible programs is greatly

increased, and the chances of mutating a functional program and coming up with

another program that also works are much higher.

Although the details of these systems differ somewhat3, the general mode of operation

is the same. An “evolutionary run” commences with the introduction of an ancestor

program into the otherwise empty memory. The ancestor program has been hand-

written by the researcher to produce another copy of itself in the computer’s memory

when the program is run. A small element of stochastic behaviour is usually associated

with the execution of the machine instructions, e.g. an add instruction which usually

adds one to its operand may occasionally add zero or two instead, or a copy instruction

may sometimes mutate a byte of the data it is copying. Alternatively, the programs

may be subject to point random mutations at a given low rate. In either of these

ways, as a run proceeds variations of the ancestor program begin to appear. If a

variation retains the ability to produce a copy of itself, then it too may be retained

in the population of programs over a large number of generations. As the available

memory begins to fill, some sort a reaper operation is performed to kill off some of the

programs.

A number of interesting results have been obtained from such evolutionary runs, for

example the appearance of “parasites”—short pieces of code which run another pro-

gram’s copying procedure in order to copy themselves. It may be true to say that most

of the interesting behaviour that has been seen to evolve has done so because facilities

2 With template-driven branching, a branching instruction is followed by a template (a sequence of
bits). The operating system will search for the nearest matching template in the rest of the code
and move the instruction pointer to that position.

3 Programs in Avida and Computer Zoo also have the notion of a location in a 2D space (in Com-
puter Zoo the programs can actually move around this space). This notion was introduced mainly
to provide a form of genetic isolation, and also to facilitate efficient implementation on parallel
hardware.
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for these behaviours were engineered into the original language specification. For ex-

ample, the fact that parasites emerge is a little less surprising when the mechanisms

of template-driven branching are considered. However, what all of these studies have

demonstrated is that it is possible to build a robust operating system in which non-

trivial self-replicating computer code can evolve. It will be of great interest to follow

the development of these systems, particularly Tierra and Avida, whose creators plan

to conduct further research on more powerful parallel hardware.

Kurt Theraling and Ray have also published a paper entitled “Evolving Multi-Cellular

Artificial Life” in which they describe an extension to the Tierra system to allow

programs to run parallel processes ([Thearling & Ray 94]). Although interesting in

its own right and for the development of parallel computer code, these programs are

multicellular in a different sense to that described in Chapter 1; they are capable of

spawning new parallel processes during runtime, but the process of self-replication

still involves copying each instruction in the program byte-by-byte to a new memory

location. It is the fact that what is being copied is still a high level description of the

phenotype4, rather than a much lower level recipe for producing the phenotype that

makes this arrangement less likely to be successful in evolving complex adaptations,

according to the current thesis (see Section 3.1).

John Koza has proposed a system of self-replicating programs using a slightly different

approach ([Koza 94]). Koza’s programs are boolean trees whose nodes may be standard

logical functions (i.e. and, or, not) or a number of extra functions which not only

produce a boolean result but also have side effects which act upon the program itself or

upon other programs in the computer’s memory. For example, there is an add function

which will search the rest of the memory for a program matching a given template,

and, if one is found, will have the side effect of substituting this new program in the

position where the add instruction resided in the original program.

One result of this approach of using boolean functions with side effects is that a program

may perform a boolean calculation as well as having the side effect of producing another

copy of itself somewhere else in memory. Koza encouraged his programs to perform

specific boolean calculations by imposing a fitness function on the system—a program

4 The phenotype being the behaviour of the program, or even just the program itself.
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has a good chance of proceeding to the next generation only if it is able to self-replicate,

and performs well on the target boolean function5. In this respect, Koza’s system

is very similar to Avida, where programs can gain more CPU time by successfully

completing user-specified tasks.

While it is perfectly possible for a program on, say, the Tierra system to perform

other functions as well as reproducing itself, this hasn’t been observed yet, presumably

because there is no obvious way in which a program’s fitness may be increased by doing

tasks which do not affect its ability to reproduce6.

In this important sense, Avida and Koza’s system differ from Tierra and Computer Zoo;

the latter pair of systems allow programs which perform complicated functions which

may not be directly related to self-reproduction, but only if, by however roundabout

a route, such functions in some way increase that program’s longevity, fecundity or

copying-fidelity relative to the other programs in the system. In contrast, in Koza’s

system and in Avida, there is actually a specified function (or set of functions) which

the programs must perform as well as having to be able to reproduce. In this way,

there are effectively two fitness measures, the former being completely unrelated to a

program’s ability to self-replicate.

The reasons for Koza’s and Adami et al.’s decisions to build such systems are not stated

in their papers, but I suspect they stemmed from a desire to incorporate the potential

evolutionary power of self-replicating entities within a framework where the evolving

programs were actually performing a task specified by the researcher so that they

were doing something useful as well as reproducing. This may well be a promising

line of research, but it should be remembered that it is without an analogy in neo-

Darwinist theory, according to which an entity’s fitness is only related to its powers of

self-replication7. The subject of adding extra functionality to self-replicating programs

5 The set of primitive computational entities from which programs may be constructed comprised not
only eight functions (some of which have been described), but also three terminals, corresponding
to three boolean input values. In any given evolutionary run, all the programs are tested for their
performance on a specific three-argument boolean function—the target function.

6 In fact, we might expect any such ‘additional’ functionality to actually decrease the program’s fitness,
as it would have the effect of wasting CPU time which could otherwise have been utilised by the
program in producing more copies of itself.

7 Note, however, that there is an analogy here with the attempts of genetic engineers to implant
recombinant DNA into living organisms to farm useful proteins such as insulin. These results
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is an important issue, and I shall return to it in Section 3.3.

In addition to the systems already described, this section would be incomplete

without mention of the ideas of Douglas Hofstadter, some ten years ahead of Tierra

([Hofstadter 79]). Hofstadter proposed a system called Typogenetics, in which he “tried

to capture some ideas of molecular genetics in a typographical system”. In this system,

a strand of letters encoded a sequence of operations (such as copying, cutting etc.)

which were to be performed upon the strand itself. The Typogenetics systems was

later developed and analysed by Harold Morris in his PhD dissertation ([Morris 88]),

in which he showed that it was possible to produce several types of strand which were

capable of self-replication. If the interpretation and processing of strands is handled

on a computer, then we have a system of self-replicating computer programs, albeit

with a somewhat different representation and interpreting process to those used in the

other systems described in this section.

In his original book, Hofstadter also discussed the issues of self-replication and self-

reference in great detail (which we will return to in Chapter 3).

2.1.2 Similarities Between Self-Replicating Systems

It is of interest to compare the kinds of machine instructions that have been included

in the languages from which each of the described self-replicating systems (except Ty-

pogenetics) are built. Such comparison reveals that the following features are common

to all the languages:

1. Template facilities

2. A small number of registers (together with associated facilities)

3. A stack8

suggest that it is possible to employ self-replicating entities for human-specified tasks, at least in the
short term. The interesting question here is whether the genetic engineers can successfully change
the fitness landscape of the organisms in the long term (by killing those organisms which do not have
the ability to produce the protein) in order to create a new breed of protein-producing organisms
which is evolutionarily stable, at least in the environment of the laboratory.

8 In Koza’s system, there are two ‘semi-stacks’ called matched-tree and open-space. The former
can contain a sequence of instructions which are all placed there at the same time, but which can
be read off one by one using the lr instruction. The latter can be written to one instruction at a



10 CHAPTER 2. AN OVERVIEW OF RELATED WORK

4. Very few/no constant operands

5. Basic arithmetic/boolean operators

6. Conditional operator(s)

7. Memory allocation facility

8. Split operator (to signal that a newly written data should now be interpreted as

a program in its own right)

(In Koza’s system, the last two features of this list are implicit in the processor rather

than being explicit instructions in the language.)

The types of operations used in Typogenetics were more biologically inspired, including

the following:

1. Move read/write head

2. Find a template (a ‘purine’ or a ‘pyrimidine’)

3. Switch copy mode on/off

4. Insert a new unit

5. Delete a unit

6. Cut strand

There is a striking resemblance between this list and this list of operations performable

by a Turing machine. This leads us on to the question of whether any or all of these

systems are capable of universal computation—this is certainly a critical point, as only

those systems which are computationally complete9 are even theoretically possible of

time using the sr instruction, but only when the sequence of writing instructions is deemed to have
stopped can the contents of open-space be acted upon, and action at this point will operate on the
entire contents of open-space. (To my knowledge, the computational completeness of this system
has not been proved.)

9 In this paper the terms “capable of universal computation”, “computationally universal”, “compu-
tationally complete” and “Turing equivalent” are used interchangeably.
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evolving programs to perform any conceivable computational process. The computa-

tional completeness of Tierra has, in fact, been proved by Carlo Maley [Maley 94].

Both of the lists above share the following properties:

• A small instruction set compared to traditional computer languages10

• Robust instructions (e.g. no explicit memory addressing)

We will return to thoughts of the kinds of property that suitable representations should

include in Section 3.5.

2.1.3 To Self-Replicate Or Not to Self-Replicate?

On the difference between self-replicating and non self-replicating systems, Tom Ray

has the following to say:

“Self-replication is critical to synthetic life because without it, the mech-

anisms of selection must also be pre-determined by the simulator. Such

artificial selection can never be as creative as natural selection. The or-

ganisms are not free to invent their own fitness functions. Freely evolving

creatures will discover means of mutual exploitation and associated implicit

fitness functions that we would never think of. Simulations constrained to

evolve with pre-defined genes, alleles, and fitness functions are dead-ended,

not alive.” [Ray 91]

It seems that there are a number of fairly fundamental differences between systems

which support self-replication (e.g. the systems described in this section), and those

in which replication of individuals is governed by the algorithmic engine (e.g. genetic

algorithms). Three such differences are listed in Table 2.1.

If we are hoping to evolve programs that are useful to us in ways other than being a

study of self-replication, we are again drawn to the question of whether self-replicating

10 The size of the instruction sets of traditional languages is much larger than one might imagine if all
possible combinations of operands are taken into account.
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Self-Replicating Non Self-Replicating

Individuals are at liberty to define
their own fitness functions

Fitness functions are defined ex-
ternally and are generally constant

Evolution is open-ended Evolution is not open-ended

Phenotype must include machine
instructions to replicate genotype

Phenotype can be anything that
represents a solution to the spe-
cified problem—it is not confined
to machine instructions

Table 2.1: Properties of self-replicating versus non self-replicating systems

code can be forced to evolve solutions to some externally defined fitness measure. This

issue is discussed in Section 3.3.

It should be noted that, strictly speaking, classification of systems as either self-

replicating and non self-replicating can be a somewhat arbitrary decision, depending

on the extent to which the component parts of the system (i.e. the program, data,

interpreter and processor) are intertwined, and on which components are subject to

reproduction.

To borrow an example from [Hofstadter 79] (p. 499), suppose there is a computer

language that has the convention that any program beginning with an asterisk has

the side effect of copying the entire program in memory before executing the other

commands. Then a program consisting of a single asterisk is self-replicating. The

main reason why such a self-replicating system seems a ‘cheat’ is that the processor

is performing the whole copying process in response to a single program instruction

rather than a long list of program instructions to explicitly perform the self-replicating

task. The evolution in such a system would presumably be somewhat constrained as

the processor is beyond the influence of natural selection.

We shall return to issues relating to the ‘granularity’ of the copying process, and to

which components of the system are being copied, in Section 3.2.

2.2 Research with Developmental Systems

There has recently been a considerable growth in research looking at various aspects

of developmental systems. Several approaches have been taken, which differ in the
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extent of biological inspiration employed, and the extent to which the model uses local

inter- and intra-cellular interactions on one hand, to more abstract grammar-based

descriptions of the developmental process on the other hand.

To my knowledge, the first published work on proposed mechanisms by which biological

organisms achieve spatial pattern formation (morphogenesis) was Alan Turing’s paper

“The Chemical Basis of Morphogenesis” [Turing 52]. Turing had started working on

this subject at around this time, but regrettably this was the only publication before

his death11.

The paper began with a memorable quote which is worth bearing in mind when con-

sidering the other models proposed in this section as well:

“This model will be a simplification and an idealization, and consequently

a falsification. It is to be hoped that the features retained for discussion are

those of greatest importance in the present state of knowledge.” [Turing 52]

Turing proposed a fairly simple mathematical model of a system in which a number

of chemical substances (which he called morphogens) reacted with one another and

diffused through a tissue, and showed that this model was capable of accounting for

many phenomena associated with morphogenesis and pattern formation. However, as

attractive as such ‘reaction-diffusion’ models are, there is still very little direct evidence

for them in biological organisms.

Quite fittingly, since Turing’s day the use of computer simulations has meant that it

is now possible to study the dynamics of much more complicated systems (i.e. with

fewer simplifications and idealizations) in a great deal of detail. The rest of this section

describes some more recent research, some of which concentrates on modelling processes

at the cellular level, and some of which uses somewhat more abstract descriptions.

11 However, some originally unpublished manuscripts, as well as a reprint of the Morphogenesis paper,
have recently been published in [Saunders 92].
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2.2.1 Cellular Level Models

Kunihiko Kaneko and Tetsuya Yomo have proposed a model of cell differentiation based

on simulations with interacting artificial cells [Kaneko & Yomo 95]. The model com-

prises a metabolic reaction network within each cell (i.e. each cell contains a number

of chemicals each at a certain concentration, and rules are given to describe how these

concentrations change over time), interaction between cells (i.e. active transport and

diffusion of chemicals), and cell division. No spatial variation is included in the model,

although the authors are currently working on this, and cell death is not included, al-

though the authors have experimented with this. One of the main results of this work

is that cell differentiation is observed to occur after a certain number of cell divisions,

and that this differentiation between groups of cells becomes fixed after a time.

Hiroaki Kitano has taken the basic model proposed by Kaneko and Yomo and added

a genetic algorithm to evolve the genetic rules that determine the metabolism of cells

[Kitano 94]. Extending this work further, he has added a ‘Nerve Growth Factor’ to the

cells, which promotes ‘axon’ growth when it reaches a certain threshold within a cell.

In this way, a neural network develops over the multicellular organism [Kitano 95]12.

Kitano draws three main conclusions from this work; (1) differentiation of cell types

through a process of development is possible in this model, (2) the rate of change

of chemical balance in each cell slows down as the size of the cluster grows, and (3)

interaction between cells is very important in determining the global behaviour of the

system. One weakness in the work is the fitness function employed—a function of

the weighted sum of the total DNA produced by an organism, the number of cells it

contains and the total length of axons. Kitano acknowledges that fitness should ideally

be related to the behaviour of an individual in the environment.

Similar work on growing neural networks has been carried out by Stefano Nolfi, Domen-

ico Parisi and Angelo Cangelosi, but instead of modelling the detailed metabolism of

the cells, these researchers modelled a set of developmental instructions governing the

behaviour of the neurons. This work generally concerns itself with the growth of a

neural network to control an artificial organism searching for food in a 2D world. Al-

12 The growth of cells and axons in this model all occurs in a 2D space.
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though evolution acts upon the neural network, the morphology and sensing apparatus

of the organism is fixed.

In [Nolfi & Parisi 95] an organism is evolved whose genome contains a description of

up to 40 different neurons. The description includes details such as the position of

the neuron in 2D space, synaptic weight, branching angle of axons etc. Although the

growth of axons is modelled in this work, the neurons themselves can appear at different

places in the network at different times during maturation, depending on information

contained in the genome—there is no growth of a multicellular organism from a single

‘zygote’.

[Cangelosi et al. 94] describes an approach which is more interesting from the current

perspective. In this work, there are 16 different types of cell, and along with a de-

scription of each cell’s axon growth similar to that used in [Nolfi & Parisi 95], a set of

production rules is also encoded on the genome which dictates the way in which each

type of cell divides into two daughter cells (as such, this is a hybrid of a cellular level

model (description of axon growth for each cell) and a grammar based model (pro-

duction rules for each cell type)). The encoded information also includes the location

where daughter cells are placed in the network relative to their mother, so that a kind

of cell migration is modelled in the system. A network begins as a single egg cell of

a specified type, and is grown for five cell division cycles according to the production

rules. At this stage, the axons are then grown from the final configuration of cells to

form the neural network.

Both [Cangelosi et al. 94] and [Nolfi & Parisi 95] include a discussion of the differential

effects of mutations affecting the early and late stages of development of an organism,

and of the evolutionary consequences of both types of mutation. The conclusions

are fairly logical; basically that mutations affecting early stages of development have

a much greater impact on the final morphology of an organism than do late-acting

mutations (they lead to long jumps in the genomic state space), so are less likely to

produce viable individuals. Hence, early-acting mutations are less likely to be retained

over evolutionary time, but those that do will produce fairly radical changes in mor-

phology. These ideas agree with and are expanded upon by Stuart Kauffman in his

book “The Origins of Order” [Kauffman 93] described in Section 2.3.
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On a slightly different note, Frank Dellaert and Randall Beer have proposed a model of

development with three components; a genetic regulatory network, a cellular simulator,

and an organismal level component to deal with intercellular communication and other

high level features [Dellaert & Beer 94]. In this model, a genetically encoded Boolean

network encodes the development rules for an artificial autonomous agent. The paper

describes experiments in which a 64 cell ‘creature’, composed of a number of differ-

ent cell types, grows from a single zygote, and how the phenotype evolves towards an

externally specified pattern used to judge the fitness of each organism. As a demonstra-

tion of how a fairly complex morphology can arise from a fairly simple developmental

model, this work is of great interest, although a number of features were added to the

model to make it more likely to succeed13.

2.2.2 Grammar-Based Models

This section describes work using grammar-based models to describe developmental

systems. As was apparent in the previous section, the distinction between cellular

level models and grammar-based models is sometimes less than clear—they are prob-

ably best viewed as different ends of a spectrum of models. Indeed, Kitano suggests

in [Kitano 94] that the morphogenesis observed in his cellular level model may be

describable by a grammar-based model.

However, some of Kitano’s earlier work on growing neural networks was based explicitly

on grammar models. In [Kitano 90] a system is described which uses a genetic encoding

of ‘graph’ L-system production rules to produce the weight matrix of a neural network.

The topology of the networks is, however, fixed—the only variability being the number

of hidden units employed, which may vary up to a given maximum. The L-system

has no context sensitivity during morphogenesis, and the whole net is grown before

it is subject to input. Even with this fairly simple system, in a comparison against a

direct-encoding system on a 4-n-4 encoder/decoder problem, the indirect, grammar-

based model is found to have far superior performance, especially as the problem size

13 For example, although an organism evolved which had a sensible design (eyes at the front, motors
at the rear, and neural tissue internally), this was because it was selected for its similarity to a given
model organism rather than because its design was deemed to be functionally fit. Also, each cell in
the developing model has some global knowledge of the morphology, i.e. knowledge of whether it is
near the midline of the organism or whether it is on an exterior boundary.
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is scaled.

Frédéric Gruau has developed a somewhat more complicated developmental system

for producing neural networks [Gruau 92], [Gruau 93]. In this system, chromosomes

encode a description based upon a cellular rewriting system to specify the development

of the architecture and weights of a network. The task of the networks is to solve

boolean functions, which they evolve to do successfully. Gruau claims that the system

works because (1) the representation is abstract, modular14 and compact, and (2) any

chromosome develops a valid phenotype.

In a similar fashion, Richard Belew has described results of using an ONTOL grammar

system to encode the development of neural networks to predict time series [Belew 93].

One finding is that after the first few hundred generations, where only first order solu-

tions are produced, there is a sudden increase in complexity of solutions, with higher

order (and better) solutions appearing. This phenomenon, which some authors have

likened to the debated evolutionary phenomenon of punctuated equilibria, has in fact

been observed in several of the other neural network models reported in this section.

It appears in this case that as a network evolves, new units and connections are being

added to the hidden layers which don’t actually have any effect on its performance

(and so are no subject to selection pressure). However, these extra units may eventu-

ally come to be connected to the inputs and outputs of the net by mutations in the

production rules, and when this happens there may be an instantaneous jump in the

performance of the net.

Most of the work described in this section has been inspired to a greater or lesser extent

by the work of Aristid Lindenmayer, who developed L-system grammars for the de-

scription, analysis and developmental simulation of multicellular biological organisms.

There are many different varieties of L-system, some of which can model context sensit-

ivity in the sense that a production rule might specify that one type of node be next to

another type for the predecessor of the production to be satisfied. It has been demon-

strated that a wide variety of complex morphologies can be created using such systems.

Moreover, using map L-systems, the morphologies are not restricted to tree structures.

14 Gruau has shown that a single section of the chromosome is capable of producing the same sub-nets
in different parts of the final network.
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A good introduction to L-systems is given in [Lindenmayer & Prusinkiewicz 88].

2.3 Research with Self-Organization

In the final section of this chapter, I will briefly mention some recent work on self-

organizing systems, and on the effects that self-organization may have on the process

of evolution.

Stuart Kauffman and colleagues have published a number of papers on this subject,

and most of these ideas appear in his book “The Origins of Order” [Kauffman 93].

Kauffman argues that random variation and selection alone are not the only processes

affecting biological evolution, but that self-organizational properties inherent at sev-

eral levels in natural organisms also play a crucial role in the evolution of complex

adaptations. These self-organizational properties may be strong enough to act against

selection and Kauffman suggests that they can account for similarities between species

which are sustained despite the pressures of selection. His view is that the study of

self-organization adds a great deal to our understanding of the neo-Darwinist position,

which he considers to be a correct but incomplete account of natural evolution.

Jari Vaario has also been concerned with self-organization. In [Vaario 94a] and

[Vaario 94b] he describes a computational modelling method for adaptive self-

organization. The model is an object-oriented language in which cells and environ-

ment can interact. In his papers, Vaario stresses the need to include developmental

processes in the study of evolution. On the developmental system itself, the need for

local interactions between cells is stressed, as it has been by other authors. Local

interactions are regarded as essential by Vaario both because of their facilitation of

self-organization in an organism, and also because they ensure that the developmental

process is non-linear, so that a single mutation of the genotype can create a completely

different phenotype.

Vaario and Katsunori Shimohara have also published a paper which describes a method

of studying formation of structures based on a network of autonomous units, which has

some correspondence with biological morphogenetic processes [Vaario & Shimohara 95].

The interactions in the network are modelled by attractive and repulsive forces, the
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production of these forces being controlled in each unit by genetic information and en-

vironmental factors. The genetic component enables the use of evolutionary algorithms

to evolve the interactions and thus to create new structures.

This work, along with other work described in this chapter, demonstrates the growth

of interest in studying local interactions between subunits of a self-organizing system.

I expect such a perspective to be very useful in my proposed research.

In the next chapter, I expand upon some of the ideas that have been highlighted by

this review, and introduce some others which I also consider to be relevant for the

study of developmental systems in the context of self-replicating computer code.



Chapter 3

Some Thoughts about

Development and

Self-Replication on a Digital

Medium

3.1 The Analogy and Associated Nomenclature

Before proceeding, it will be helpful to clarify the meanings I wish to attach to some of

the terms used in the remainder of this paper. The way I define the following terms in

the current context indicates the level of analogy being drawn between biological and

digital self-reproduction and development.

• SYSTEM. A term to encompass a whole collection of self-replicating organisms

(which may be of one or many species), together with the physical environment in

which they compete, and any necessary interpreting and processing engine

not associated with individual organisms.

• ORGANISM. An individual self-replicator. This term encompasses all com-

ponents of the self-replicator which are exposed to selection, mutation, recom-

bination etc. For example, in a traditional genetic algorithm, an organism is just

an encoded ‘chromosome’ representing a solution to a problem, whereas in the

system proposed in Section 3.5.5, the organism comprises a genome, a pheno-

typic program, and some associated processing machinery.

20



3.1. THE ANALOGY AND ASSOCIATED NOMENCLATURE 21

• GENOME. A blueprint for an individual organism which is interpreted by the

interpreting machinery to produce a program which is the phenotype of

the organism. The genome is passed from one generation of an organism to

the next, subject to possible genetic recombination with other genomes, copying

errors, mutations etc.

• PROGRAM. A set of instructions in the language of the processing machine

of the organism.

• INTERPRETING MACHINERY/ENGINE. The mechanism which reads

genetically encoded instructions and translates them into instructions that the

processing machinery can understand. The terms machinery and engine are

somewhat interchangeable, although I generally use the former in situations

where the interpreter is part of each organism, and the latter where it is

a hard-coded component of the system, unattached to individual organisms,

not subject to evolutionary change and selection, and where it interprets every

organism in the system according to the same set of rules.

• PROCESSING MACHINERY/ENGINE. The mechanism which executes

language instructions according to the interpreted genetic information of an or-

ganism.

• META-PROCESSOR. There will be a need, especially when running a sys-

tem on a serial machine, to perform various high-level housekeeping tasks such

as time-slicing, memory management etc. The meta-processor will not be

subject to evolution, and may be regarded as being outside of the system.

• SIMPLE SELF-REPLICATOR. A self-replicator in which there is a one-

to-one mapping from genotype to phenotype. Most classical genetic algorithm

‘chromosomes’ fall into this category.

• SINGLE-CELLED SELF-REPLICATOR. A self-replicator in which the

genotype is a ‘recipe’ for constructing the phenotype according to a given de-

velopmental scheme. The work described in [Nolfi & Parisi 95] involves such a

developmental scheme (although the individual organisms in the system are not

self-replicators).
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• MULTI-CELLED SELF-REPLICATOR. A self-replicator in which, not

only is the genotype a ‘recipe’ for constructing the phenotype, but where the

method of construction entails the processes of division and differentiation

from an initial ‘seed’ (or zygote) to a final connected collection of terminal

nodes. The systems described in [Cangelosi et al. 94], [Dellaert & Beer 94] and

[Kitano 95] all involve this type of developmental scheme (although the individual

organisms in the systems are not self-replicators).

• TERMINAL NODE. A discrete component of a multi-celled self-

replicator, either possessing internal information processing capacities of its

own, or representing a single instruction in the language of the processing ma-

chine for the whole organism. An organism has a finite set of terminal

node types.

Note that in the above definitions, the distinction I am drawing between single-celled

and multi-celled self-replicators is that the latter have a process of division and differ-

entiation to produce phenotypes, whereas the former do not. The current thesis holds

that multi-celled self-replicators are successful at evolving complex adaptations be-

cause their genotypes are recipes for their phenotypes, and they have a developmental

process entailing the processes of division and differentiation.

I am not concerned with the fact that in multicellular biological organisms every cell

has a copy of the same genome and they all act fairly autonomously (they all contain

their own processors) even in adulthood. It would appear to be unnecessary in a com-

puter system to have local copies of the genome, because any part of the organism can

have direct access to a single master copy of the genome, which is a much more efficient

arrangement. As for each cell having its own processor, this is a highly significant fea-

ture of biological organisms. However, on a digital medium, having many processors

acting individually within a single organism would be very expensive in terms of com-

puter processing power. Given the limited computer resources at my disposal, it is

therefore probably best to stick to simpler systems and leave enough computer pro-

cessing power to be able to run large populations of organisms over many generations

during an evolutionary run.
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3.2 Overcoming the Paradox of Self-Replication

An organism that has the power to replicate itself would seem to be paradoxical, in

the manner explained by Harold Morris in the following quote:

“It seems that an entity with reproductive capacity must possess in-

formation descriptive of what it is to generate, as a factory’s automated

chemical-synthesizing system is programmed with the recipe for the com-

pound it is to synthesize. But now an entity S0 which is going to replicate

itself would seem to need information descriptive of itself; we might suppose

it is equipped with a blueprint of itself. Yet its offspring S1, being identical

to S0, also has the capacity to self-replicate, so S1 must possess a self-

descriptive blueprint. S0’s blueprint then describes a blueprint-equipped

self-replicator, which means the self-replicator’s blueprint describes, among

other things, a blueprint. Yet it doesn’t stop there, because S1’s blue-

print must contain a description of its blueprint-equipped self-replicating

offspring S2. Following this transitive line of reasoning out it appears the

blueprint of S0 embeds an infinity of self-descriptions.” [Morris 88] p. 382

In practice, of course, we see self-replication all around us; in biological organisms and

in the systems described in Chapter 2. The apparent paradox of self-replication would

appear not to be a real constraint at all—but what is the ‘trick’ used to overcome it?

The systems of self-replication described in the previous chapter all share the feature

that individual organisms contain information which is sometimes treated as instruc-

tions in the language of the system, and sometimes treated as data to be copied to a

different part of the computer’s memory in the act of self-replication. This duality of

meaning—and the separation of the processes of copying information and of processing

it as instructions—is the key to solving the problem.

However, a whole computer system is composed of more than just instructions and

data—an interpreter is required to translate the instructions into the machine language

of the hardware, and a processor is required to supervise the execution of these machine

language instructions and to perform various associated ‘housekeeping’ duties.
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Looking at any of the described systems from an evolutionary point of view, the fact

that it is only the programs and data that are subject to evolution, while the system’s

interpreter and processor remain hard coded and outside the influence of mutation

and selection, suggests that the potential for the system to evolve complex adaptations

must be somewhat diminished. In biological systems, DNA, RNA, ribosomes and

all the associated cellular machinery constitute the program, data, interpreter and

processor, and all of these components are subject to natural selection.

The more self-contained a system is, the more potential it has for truly open-ended

evolution. However, the more self-contained the self-replicating system is, the more

imposing the paradox of self-replication appears; in a completely self-contained system,

we must concern ourselves not only with the replication of program and data, but also

of interpreter and processor as well.

The key to overcoming this problem is to include a sufficiently strong support system

(to borrow a phrase from [Hofstadter 79] p. 529), as exemplified by the biological case.

In eukaryotic sexual organisms, the single-celled zygote inherits cell machinery from the

maternal gamete (the egg cell). This machinery is sufficient to interpret and process the

zygotic DNA and begin the process of cell division and differentiation. As the organism

grows, sections of its DNA are decoded which produce more cellular machinery. By

the time this organism comes to reproduce, some of its cellular machinery is contained

within germ line cells (if it is female) to ‘bootstrap’ the next generation in the same

way. Thus we have two systems, A (the cellular machinery) and B (the DNA). A

replicates B and B replicates A.

An important goal of my research is to use this analogy to produce a system on a

digital medium which is as self-contained as possible.

In such a system, where all components are subject to selection, the possibility arises,

when set against a backdrop of coevolution and a changing environment, of a kind

of high level selection for species which are good at evolving. Richard Dawkins has

suggested just this [Dawkins 88]. He believes that if selection among embryologies for

the property of evolvability can proceed in a cumulative manner, then
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“Perhaps there is a sense in which a form of natural selection favours, not

just adaptively successful phenotypes, but a tendency to evolve in certain

directions, or even just a tendency to evolve at all.” (p. 219)

It will be of great interest to look for evidence of such high level selection during

the research proposed in this paper. Note that, if we are to be able to observe this

phenomenon (and also to observe phenomena associated with co-evolution, discussed

in Section 3.6), we will need a number of distinct species1 of program to be co-existing.

There should, however, be no need to engineer this into the environment, as existing

systems (biological or digital) which allow open-ended evolution always seem to produce

and be capable of sustaining a rather large number of species.

An additional advantage of a self-contained system is that, as the interpreter and

processor of a genome are under the control of selection, it is possible that evolution

may be able to fine-tune parameters of the system such as the mutation rate during

copying, the degree of epistasis2 etc. Kauffman has suggested that the values of such

parameters may be critical if a population is to be able to maintain high fitness as the

complexity of the system increases [Kauffman 93].

3.3 Selfish Genes and Useful Programs

When studying evolution in a system of self-replicating entities, it has been suggested

by Dawkins that the only sensible level at which to study natural selection is that of the

gene [Dawkins 76]. The definition of a gene is somewhat fuzzy, but is generally regarded

as a section of the genome which can produce a differential effect on a particular

phenotypic trait, depending on which allele of the gene is present. This reflects the

fact that, after the long process of development of an organism, many different genetic

and environmental factors will have influenced any given phenotypic trait, so that the

1 Strictly speaking, we just need considerable genetic diversity rather than a number of distinct spe-
cies (that is, the genomes of individuals in the population could vary smoothly rather then being
grouped into species). However, a number of possible reasons have been proposed to explain why
distinct species do tend to form in practice, the most likely being evolution in a system where genes
may become (geographically) isolated from each other and therefore unable to fully intermix. See
[Maynard Smith 89].

2 The degree of epistasis of genes in a genome is the extent to which the fitness of a given allele
depends upon the presence or absence of alleles of other genes at different positions in the genome.
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notion of a single gene being responsible for a particular trait is a gross simplification.

However, it is still valid to talk about different alleles of a gene producing variations

in a phenotypic trait. The picture is complicated by the fact that, in a system of

interacting organisms, phenotypic effects of one organism might extend beyond its

body even to the extent where it is sensible to talk about a gene in one organism

producing a phenotypic effect in a different organism (see [Dawkins 82]).

If we look at evolution in a population from this perspective (i.e. as a competition

between genes in the gene pool), then we see that it is the genes which are good at

promoting the production of more copies of themselves in the gene pool that will come to

dominate. This doesn’t necessarily square with the development of optimally efficient

individual organisms3, which is a very important consideration if we are hoping to

evolve self-replicating computer programs that can perform useful tasks as well as

reproduction. Three important questions are:

• Is it possible to direct self-replicating programs to perform some useful task as

well as reproduction?

• How long can such behaviour be sustained in an evolutionary run?

• How likely is it that a program evolved in such a way will be particularly efficient?

These are open questions, and it is hoped that the work proposed in Chapter 4 may

begin to illuminate them.

3.4 Self and Non-Self

If evolution is really all about competition among selfish genes in the gene pool, we are

drawn back to the question expressed in Chapter 1 of why it is that, in nature, genes

generally group themselves into massive conglomerations—multicellular organisms—

which have the sole responsibility for the replication of all of the genes they contain in

3 In fact, the very notion of ‘efficiency’ of an individual organism becomes meaningless from this
perspective—it is the genes which are efficient or inefficient at promoting their own reproduction
through their phenotypic effects on all of the organisms in the system, and on the environment.
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their genomes. In that chapter, several possible answers were suggested, mostly based

upon the work of Dawkins.

If we take the digital analogue of a single organism to be a single computer program,

then the extent to which this program is an autonomous individual is defined by which

parts of the computer’s memory it has permission to read and write. Most of the

research with self-replicating code has allowed programs the potential of read access

to all parts of memory, but of write access only to memory owned by the program.

Unsurprisingly, it has generally been found that allowing unrestricted write access

leads to a fairly chaotic and destructive environment (see, for example, [Dewdney 84],

[Dewdney 85] and [Dewdney 87]).

A program that can read the genome of another program in memory can be regarded

as having incorporated this new genetic information with its own. In other words,

such a program is performing a kind of genetic recombination. There are a number of

ways in which genetic recombination (or, more generally, the mixing of genetic material

from a number of organisms) is performed in nature, the most obvious being crossover

during reproduction, but also through parasites and symbionts such as bacteriophages,

plasmids and transposons.

It has been proposed that sexual reproduction and these other methods of sharing

genetic information may confer advantages to a species in conditions where the en-

vironment is changeable (be this the physical environment or the other species with

which the species interacts and co-evolves), but this is a debated topic. For example,

the following quote is from [Fontanari & Meir 90]:

“Two points which are usually cited in favour of sexual reproduction:

(1) sexual organisms evolve more quickly than asexual ones, due to the pos-

sibility of two (or more) favourable genes coming together, and (2) sexual

organisms are less likely to accumulate harmful mutations as these can be

reconstituted through recombination. In the asexual case, a reverse muta-

tion would have to take place. These points should be weighed against

the advantage of asexual reproduction, namely that favourable genes are

transmitted directly to offspring without the potential harm of mixing them
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with unfavourable genes of the mate.”

John Maynard Smith has discussed these issues at some length in [Maynard Smith 89].

My research will concentrate, at least initially, on the development of asexual self-

replicating code (i.e. a program will only be able to read and write to memory that it

owns). Later on, I hope to reach a stage where I am able to study aspects of genetic

recombination, either through introducing handwritten ancestral programs that can

inspect the genetic information of other programs, or, ideally, by witnessing such an

ability spontaneously emerge from an existing asexual population4.

In order to attack the more fundamental question of why a multicellular organism is

selectively advantageous to a single strand of self-replicating material, I also plan to

study competition between programs which grow from an indirectly encoded genome

(as described above) and simpler programs (analogous to many described in the previ-

ous chapter) that contain a one-to-one mapping from genotype to phenotype (i.e. the

‘genome’ is the program itself).

3.5 Representation

In the preceding discussion, mention has been made of several factors which should

be taken into account when deciding upon a suitable representation for genotypes and

phenotypes in the proposed system. These include issues concerning:

• the robustness of self-replicating code

• the size of the instruction set

• the granularity of the copying process

• the features of the developmental system

• the degree to which an individual genome contains the power to interpret and

process itself

4 Such spontaneous emergence would, of course, only happen if genetic recombination confers an
advantage to programs in the environment in which they are evolving.
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• the computational completeness of the final system

Trying to accommodate all of these factors in one system will be the first task I must

tackle, and I do not underestimate its complexity. It may be that compromises will have

to be made with some features—although my intuitive feeling at present is that I would

prefer to have a system that tackles all of the issues at least to some degree, rather than

a system that tackles some issues well while completely ignoring others. The reason for

this is that I believe that all of the features in this list will be important components

of the goals I am aiming for, and furthermore that each feature will contribute to the

final system in a complex and highly interconnected way.

Below I discuss shortcomings of existing representations in the context of the current

task, and add a few more points to the discussion, which come to mind even before

starting to attack the problem in earnest.

3.5.1 S-expressions, L-systems, Boolean Graphs: A Limited Silver

Braid

The various research projects with self-replicating code and developmental systems

described in Chapter 2 have employed a variety of representations. Although each

representation was appropriate for the particular research in hand, none of them deals

with more than 3 or 4 of the points in the list at the start of Section 3.5.

Robert Collins and David Jefferson have reviewed a number of candidate repres-

entations for evolving artificial organisms (including parameterized functions, Lisp

S-Expressions, deterministic Finite State Automata and primitive rule-based organ-

isms), and came to the conclusion that none of the candidates was particularly suit-

able [Collins & Jefferson 91]. They suggest that a good representation should have the

following properties:

1. (approximate) closure of the set of legal genotypes under the action of genetic

operators, i.e. the genetic operators must always (or almost always) produce

syntactically legal genotypes when applied to other syntactically legal genotypes

(where the function that maps from genotype to phenotype defines the legal

syntax);
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2. smoothness of the phenotype under the action of genetic operators, i.e. the phen-

otype should tend to change smoothly as the genotype is changed by mutation

and recombination;

3. the ability to scale to large phenotypes;

4. the ability to evolve phenotypes that exhibit both continuous and discrete beha-

viours as a function of their inputs, e.g. the ability to switch to any one of a

repertoire of (continuous) behaviours depending upon environmental conditions;

and,

5. a uniform computational model, i.e. the programming paradigm in which the

behaviour functions are expressed should not contain features that include any

kind of explicit or implicit knowledge of the environment, nor bias toward a

particular evolutionary trajectory.

Although issues of self-replication and development were not considered by Collins

and Jefferson, most of these properties are valid in the current context; (2) is not

always necessary—it depends upon whether mutations act early or late in the process

of development, as discussed earlier, and the importance of (4) in the current context

is unclear—although the ability to switch between behaviours is an inbuilt ability of

the kind of computer languages we are considering.

Frédéric Gruau has proposed a similar list of features in the context of genetic encodings

of neural networks (see [Gruau 92] and [Gruau 94]). The list includes:

1. completeness—any neural network can be encoded. This is equivalent to our

desire for computational completeness in the current context;

2. closure (as in previous list);

3. compactness of encoding;

4. modularity—a repeated pattern in the network can be represented by a single

encoding of the pattern in the genome. This would be a desirable feature for

repeated phenotypic patterns in any developmental system;

5. scalability (as in the previous list);
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In the present context, the features from the two lists above which appear to be most

relevant are:

• completeness

• closure

• scalability

• modularity

• uniformity of model

In the rest of this section, I expand upon a few points which have already been raised,

and end with a brief sketch of the type of representation I have in mind to attack the

problem.

3.5.2 Computational Completeness

As we saw in Chapter 2, it is important to think about the computational complete-

ness of the final system as well as its ability to evolve robustly. This is really what

Collins and Jefferson were getting at by insisting on a uniform computational model—

we should not try to engineer any assumptions or features into the system which we

think might help individuals evolving within it, because in populations of any size, par-

ticularly in situations where the environment is changing or co-evolution is occurring,

interactions between components in the system will be too complex for us to completely

understand. Hence, if we engineer features which we think may be beneficial, we run

the risk that these features may actually be limiting evolution in some way that we

have not accounted for. It is therefore preferable to have a system that contains few or

no assumptions about the kinds of adaptation that it may support, but rather make

it as unconstrained as possible to evolve any and all conceivable (and inconceivable!)

organisms.
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3.5.3 Granularity of the Copying Process

It has already been mentioned that the number of components of a complete self-

replicating system (i.e. program, data, interpreter and processor) which are actually

being replicated affects both our intuitive feel for whether ‘interesting’ self-replication

is happening, and also the likelihood of truly open-ended evolution occurring.

Another way to look at this is that it is the extent to which an individual organism con-

tains explicit instructions for self-replication that affects its potential for evolvability. A

construct that relies too heavily on a hard-coded processor, so that self-replication can

be performed by calling a single command of the language, can be said to have coarse

copying granularity. On the other hand, a construct that contains explicit instructions

to direct self-replication (either within the program, or within attached processing ma-

chinery which is also subject to evolution), can be said to have fine copying granularity,

and would be expected to be capable of far more open ended evolution than a construct

with coarse granularity.

Of all of the systems described in Chapter 2, Typogenetics comes the closest to replic-

ating program, data, interpreter and processor. Hofstadter’s suggested self-replicating

Typogenetics strand (as demonstrated in [Morris 88]) encodes everything but the

interpreter—the mechanism which reads strands and produces enzymes which are en-

coded on them. The interpreter is human in Hofstadter’s system, or a hard-coded

programmatic interpreting engine in Morris’s derived system.

Hofstadter compares his system to biological genetic systems, and notes that they are

both ‘tangled hierarchies’ where there is a ‘two-way street’ of information exchange

where neither strands (DNA) nor enzymes can be thought of as being on a higher level

than the other (see [Hofstadter 79] p. 513).

3.5.4 Features of the Developmental System

As mentioned in Chapter 2, studies of pattern formation under developmental sys-

tems, together with work on self-organization, suggest that local interactions between

components of the developing phenotype play an important role in the production

of complexity in spatial pattern formation and cell differentiation (see, for example,
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[Hofstadter 79] (p. 544), [Belew 93], [Dellaert & Beer 94] and [Vaario 94a]).

It would appear that a system that exhibits a high degree of local interaction during

the developmental stage would probably be highly epistatic at the genetic level. As

has been mentioned already, Stuart Kauffman and colleagues have suggested that, as

the complexity of a system increases, an optimum degree of epistasis emerges such that

the ability of organisms to maintain high fitness values is dented if the actual degree

of epistasis in the system is either below or above this level (see [Kauffman 93]).

In the proposed work, it will therefore be of interest to look for possible effects of local

interactions during development on the evolution observed in the system.

3.5.5 A Brief Sketch of a Possible Solution

My major problem will be in finding some hybrid of the representations discussed in

Chapter 2 that is capable of performing the functions of self-replication and of devel-

opment in a way that accommodates the points raised in this section. It would seem

that the system will comprise at least three components—the chosen representation

must have the capability to describe all of them:

• A Genome—an area of memory containing the blueprint for the rest of the sys-

tem.

• Some Processing Machinery—initially inherited from the parent program, this

component contains sufficient information to map the genome into its phenotype.

• A Phenotype—a program which is formed by developmental rules contained in the

processing machinery acting upon the genome until a stage where all of the nodes

of the developing pattern are terminal nodes, i.e. instructions in the language

of the system. For self-replication, this program will have to perform at least

two functions: (1) it should contain its own copy of the processing machinery

to be inherited by its children, and (2) it should contain the necessary code to

copy (with high, but not necessarily perfect, accuracy) this processing machinery,

together with its genome, into a new part of memory, and somehow signal to

the meta-processor that this new creation should now be treated as any other
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program.

The processing machinery would begin by writing a ‘seed’ pattern5 (contained in the

genome) to some area of memory, then proceed to expand this pattern to a larger area

of memory according to production rules contained within the machinery. This process

of development would stop when the whole pattern has been expanded into a set of

terminal nodes, which are instructions in the system’s language set.

This is a fairly complicated scheme (to say the least), and raises the question of how an

ancestral self-replicating organism can be obtained. In existing self-replicating systems

such as Tierra, the ancestral program is hand-coded by the author; this is possible

because the ancestor is a simple self-replicator, in the sense defined in Section 3.1.

A number of possibilities come to mind:

1. Use a conventional genetic algorithm to evolve organisms that develop program-

matic phenotypes. The fitness function employed will reward those programs

which get all or some of the way towards self-replication. Such a route does not

offer much external control over whether the three component architecture just

discussed will be adopted—which may not be a bad thing. A major difficulty

with such an approach would be in defining a fitness function which would reward

programs which have got ‘some way towards’ self-replication.

2. A second approach would be to hand-craft the ancestral program. The task could

be made tractable by including sufficiently powerful commands in the system’s

language set. However, we would want to bear in mind the issues concerning the

granularity of the copying process, discussed in Section 3.5.3.

3. Thinking of the biological analogy, where, according to neo-Darwinist theory,

multicellular organisms evolved from single-celled organisms, it may be that the

best approach is to initially create a system of ‘single-celled’ organisms and look

for the emergence (whether unprompted or otherwise) of multicellularity from

such a system. It may well turn out that multicellular organisms are, in fact,

5 A pattern of bits.
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only viable in an environment where there is actually a preponderance of single-

celled organisms.

3.6 Other Ideas

Reading through the literature, a few other ideas come to mind. These are not con-

cerned directly with self-replication or development, but are issues relevant to any

evolutionary system.

3.6.1 Co-Evolution

Brief mention has already been made of systems where a number of different species

are co-evolving. Assuming that the species are interacting and competing with each

other in any manner, then the effective ‘environment’ in which an individual organ-

ism finds itself includes all of the members of these different species (as well as its

own). These other species are also evolving, so the environment of an organism in

the system changes over evolutionary time. It would appear that co-evolution can

accelerate the pace of evolution in each species involved, in a way depending on the

ecological relations between the interacting species. Such relations may be competit-

ive, exploitative or mutualistic. Co-evolution is discussed from a biological point of

view in [Maynard Smith 89] and [Dawkins 82]. For a more computational view, see

[Kauffman & Johnsen 91] and [Koza 91].

3.6.2 The Interaction of Learning and Evolution

Geoffrey Hinton and Steven Nowlan published a short paper entitled “How Learning

Can Guide Evolution” [Hinton & Nowlan 87] which has provoked renewed interest in

this and related issues.

In their paper, Hinton and Nowlan show, by using a simple computational model, that

“Learning can provide an easy evolutionary path towards co-adapted al-

leles in environments that have no good evolutionary path for non-learning

organisms.”



36 CHAPTER 3. SOME THOUGHTS...

Their work is the first computer simulation and analysis of this effect, which was

actually first proposed exactly 100 years ago by J. Mark Baldwin [Baldwin 96] (and

hence often referred to as the Baldwin Effect).

John Maynard Smith, in a comment about Hinton and Nowlan’s work, summarizes the

Baldwin Effect hypothesis as follows:

“If individuals vary genetically in their capacity to learn, or to adapt

developmentally, then those most able to adapt will leave most descendants,

and the genes responsible will increase in frequency. In a fixed environment,

when the best thing to learn remains constant, this can lead to the genetic

determination of a character that, in earlier generations, had to be acquired

afresh each generation.” [Maynard Smith 87]

In his paper, Maynard Smith also points out some interesting differences between sexual

and asexual populations with respect to learning and evolution. Fontanari and Meir

have published work relating specifically to learning and evolution in asexual popu-

lations [Fontanari & Meir 90]. In an interesting paper, Richard Belew has extended

Hinton and Nowlan’s work to look at interactions between evolution, learning and cul-

ture [Belew 90]. Among other things, Belew notes that evolution, culture and learning

are adaptive systems acting on vastly different timescales, and, as such, they allow a

lineage to track changes in the environment over each of these different timescales.

It should be noted, however, that the Balwin Effect depends upon a fixed environment,

which is an unrealistic assumption in most scenarios of interest. David Ackley and

Michael Littman have reported an investigation of a system where the environment

is not fixed, but the criterion for success of phenotypic behaviours is also evolvable

[Ackley & Littman 91]. Their work suggests that in these more realistic conditions,

the interactions between learning and evolution become complicated in a number of

surprising ways which are discussed in the paper.

In my later work, it would be of interest to include in the system’s language set some

features that could facilitate learning abilities (if such abilities have not been observed

to have evolved spontaneously). This would allow the possibility of a more detailed

study of the Baldwin Effect.
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In this chapter, I have tried to summarise my current thoughts about the task in hand.

In the final chapter, I try to decompose the work into a number of manageable sub-

tasks, each with clear goals, and take an initial stab at defining a timetable for this

work.



Chapter 4

Proposed Research Schedule

In this chapter, an initial attempt is made to divide the work I wish to pursue into

a number of fairly well defined stages. I have tried to devise stages which each have

some clear goal. In the final section I suggest a preliminary timetable.

4.1 Stage 1

• Decide upon a set of principles for assessing the outcome of this work. This will

entail deciding which are the questions that I wish to pose and the theories that

I wish to test, and thinking about the kinds of answers that I am looking for.

4.2 Stage 2

• Specify the required features of the language to be used, and decide upon an

appropriate platform(s) for implementation.

• Implement the meta-processor, interpreter and any other features of the virtual

machine that are required in order to be able to use the language.

• Review literature for analysis tools appropriate for evolving systems.

4.3 Stage 3

• Evolve a system that develops a programmatic phenotype from a genotype using a

standard genetic algorithm. In other words, have some pre-defined task which we

38
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want the programs to perform, and evolve a population of (non-self-replicating)

programs under a standard GA where the fitness of each program is some measure

of its performance on the task.

4.4 Stage 4

• Build upon the system developed in Stage 3 to try to evolve a self-replicating

program. A number of possible routes to this goal were briefly outlined in Section

3.5.5.

4.5 Stage 5

Experiment with the self-replicating system developed in Stage 4 in order to look at

some of the following questions:

• What are the advantages of development? Are multicellular self-replicators fitter

than single-celled or simple self-replicators (and in what circumstances)? If so,

why?

• Has genetic recombination been seen to emerge in the system? If not, in what

ways may it be introduced? In what ways does evolution in the system change

when genetic recombination is introduced?

• Is there any evidence for programs evolving the ability to learn? If not, is it pos-

sible to add extra functionality to the set of programming language instructions

to facilitate the evolution of learning? In what ways does learning interact with

development and evolution? Is there any evidence of programs using artifacts

(non-replicating parts of the system) as cultural devices?

• What are the features of co-evolution which are apparent in the system?

4.6 A Preliminary Timetable

These figures take into account a number of background activities such as attending

EPCC courses, reading and writing papers, attending seminars and conferences etc.
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Stage Approximate Duration

1 1 month

2 6 months

3 3 months

4 3 months

5 8 months

Total 21 months

Table 4.1: Preliminary Timetable

Assuming that work starts in February 1996, the project should be complete by the

end of November 1997. This seems like a reasonable target, as it leaves 10 months of

funding remaining, 6-8 months of which will probably be spent writing the final thesis.

This still leaves a few months free for possible overruns.
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