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Abstract

This paper addresses the nature of open-ended evolutionary processes, and the related, but more subtle, issue of how

fundamental novelty (i.e. creativity) can arise in such processes. A number of existing artificial evolutionary systems,

such as Tierra (Ray, 1991), are analysed in this context, but it is found that the theoretical grounding upon which they

are based does not usually consider all of the relevant issues for creative evolution. The importance of considering the

design of the environment, and of interactions between individuals, as well as the design of the individuals themselves,

is emphasised. The properties of a hypothetical ‘proto-DNA’ structure—a suitable seed for an open-ended, and creative,

evolutionary process—are discussed. A number of open questions relating to these issues are highlighted as useful areas

of future research. Finally, a paradigm for an evolutionary process described by Waddington (1969) is described. It is

suggested that this might represent a suitable starting place for a more unified and productive exploration of these issues

using synthetic (artificial life) modelling techniques.

1 Introduction

This paper addresses the question: What are the basic

design considerations for creating an artificial evolution-

ary system that displays the sort of creativity observed

in biological evolution? I am therefore specifically con-

sidering evolutionary systems which possess an inherent

ability to be creative, rather than those in which creativity

is achieved by interactions with a human observer. I start

by discussing what I mean by creativity in this context,

and how it relates to open-ended evolution. I then discuss

various issues concerning the design of artificial evolu-

tionary systems and their capacity for creative evolution.

The discussion emphasises that it is necessary to consider

not just the design of individuals, but also the sort of en-

vironments in which they live, and how individuals can

interact with each other and with the abiotic environment.

Much of this discussion is presented in relation to a hy-

pothetical structure (which I refer to as ‘proto-DNA’) that

would be suitable for acting as a robust initial seed for

an open-ended, creative evolutionary process. I go on to

discuss how these issues should be integrated into a uni-

fying framework in which the study of creative artificial

evolutionary systems can be developed.

0This paper is an abbreviated version of certain sections of Taylor

(1999).

2 Creativity and Open-Ended Evol-

ution

Most forms of artificial evolutionary system are designed

to be used as optimisation tools; the course of evolution

is guided by an extrinsically defined fitness function that

preferentially selects individuals that are deemed to be

‘fit’ according to some specific criterion (for example,

Holland (1975), Koza (1992)). In this type of system,

the evolving individuals move towards a predefined, and

usually static, fitness peak, and when this peak has been

reached, they generally stay there.

In contrast, some other evolutionary systems have a

less determinate feel. These include models of co-evol-

utionary processes of one form or another (for example,

Hillis (1990), Sims (1994), Miller and Cliff (1994),

Floreano et al. (1998)), where the success of organisms

in one population depends upon the success of organisms

in another, coevolving population. However, these stud-

ies are geared towards producing organisms which are

good at performing a particular task. To this end, the co-

evolving organisms are still generally competing in some

pre-specified (extrinsically defined) game, and they are

not given the potential for developing entirely new games

to play.

Another group of models has moved even further from

the idea of extrinsically defined fitness functions, dispens-

ing all together with the notion of modelling evolution to-

wards any sort of high-level goal (e.g. Barricelli (1957),

Conrad and Pattee (1970), Packard (1988), Ray (1991),



Adami and Brown (1994), Holland (1995)). In these sys-

tems, individuals are competing for one or more shared

resource (e.g. memory or CPU-time), and the fact that

these resources are limited induces natural (intrinsic) se-

lection for those individuals that outcompete their neigh-

bours. These systems have more of an open-ended nature,

because the individuals are not evolving towards any pre-

defined high-level goal; they are being selected for their

ability to win the limited resources, but this ability is meas-

ured relative to (some or all of) the other individuals in the

population. Hence, an individual’s ‘fitness’ changes as

new individuals are born and existing ones die. As the bi-

otic environment of an individual (i.e. the other individu-

als in the population) changes, that individual must adapt

in order to survive. This adaptation, in turn, causes the

environment experienced by other organisms to change,

so the population is in a constant state of flux. This scen-

ario is equivalent to Van Valen (1973)’s Red Queen hy-

pothesis for indefinite evolutionary change in biological

ecosystems.

For promoting open-ended evolution, the importance

of individuals being part of the environment experienced

by other individuals has also been emphasised by some

members of the artificial life community (e.g. Ray (1991),

Arthur (1994), Bedau (1998)). However, the theoretical

considerations driving the design of the above systems

have focussed almost exclusively on properties of indi-

viduals (e.g. the self-reproduction process). Little is said,

from a theoretical point of view, of how the environment

should be constructed (including how individuals form

part of the environment for other individuals), or how in-

dividuals should be allowed to interact.

Some of these latter systems can be regarded as mod-

elling ‘open-ended evolution’, in the sense that new, ad-

aptively successful individuals continuously appear in the

populations—evolutionary activity does not peter out.1

However, the kinds of evolutionary innovation observed

in these systems are generally fairly restricted. For ex-

ample, the evolutionary innovations observed in experi-

ments with Tom Ray’s Tierra platform fall into two broad

categories: ‘ecological solutions’ and ‘optimisations’

(Ray, 1997), but the limited interactions between indi-

viduals in Tierra restricts the range of possible innova-

tions even within these categories. In short, it is hard to

escape the feeling that most of these systems are only cap-

able of producing innovations of the ‘more-of-the-same’

variety (e.g. more optimised code), rather than anything

fundamentally new.

It is hard to be precise about what counts as ‘funda-

mentally new’, but I am referring to the ability of indi-

viduals to interact with their (biotic and abiotic) envir-

onment with few restrictions, and to evolve mechanisms

for sensing new aspects of this environment and for inter-

acting with it in new ways. These considerations raise a

number of issues, including:

1Although even in these systems it is debatable whether this can con-

tinue indefinitely.

� How does symbolic information arise during an

evolutionary process? In other words, how do in-

dividuals come to form representations of aspects

of their environment?

� How do fundamentally new measuring instruments

evolve (i.e. phenotypes that can measure previously

unmonitored aspects of the environment)? The sig-

nificance of this question has been discussed in de-

tail by Pattee (1988).

It is these sorts of evolutionary innovations which I am

labelling ‘creative’. Creativity is therefore distinct from

open-endedness; a system capable of open-ended evolu-

tion is not necessarily creative.

In the following sections I analyse the design of ar-

tificial evolutionary systems (specifically, those with in-

trinsic selection) with respect to open-ended evolution. I

also consider how the capacity for creative evolution can

be secured. The analysis emphasises the need for the ex-

plicit consideration of environments and of interactions as

well as of individuals.

3 Design Issues

I begin this section by introducing von Neumann’s work

on the logic of self-reproduction. Next I analyse self-

reproduction in a number of artificial evolutionary sys-

tems in terms of von Neumann’s proposed architecture. I

then discuss issues relating to phenotypic properties, and

the relationship between individuals and the environment

in artificial systems.

3.1 Von Neumann’s Architecture for Self-

Reproduction

In the late 1940s and early 1950s, John von Neumann

devoted considerable time to the question of how com-

plicated machines could evolve from simple machines.2

Specifically, he wished to develop a formal description

of a system that could support self-reproducing machines

which were robust in the sense that they could withstand

some types of mutation and pass these mutations on to

their offspring. Such machines could therefore particip-

ate in a process of evolution.

Inspired by Turing (1936)’s earlier work on universal

computing machines, von Neumann devised an architec-

ture which could fulfil these requirements. The machine

he envisaged was composed of three subcomponents (von

Neumann, 1966):

1. A general constructive machine, A, which could

read a description �(X) of another machine, X,

2Von Neumann had difficulties in defining precisely what the term

‘complicated’ meant. He said “I am not thinking about how involved the

object is, but how involved its purposive operations are. In this sense,

an object is of the highest degree of complexity if it can do very difficult

and involved things.” von Neumann (1966).



and build a copy ofX from this description:

A+ �(X); X (1)

(where + indicates a single machine composed of

the components to the left and right suitably ar-

ranged, and; indicates a process of construction.)

2. A general copying automaton,B, which could copy

the instruction tape:

B+ �(X); �(X) (2)

3. A control automaton, C, which, when combined

withA andB, would first activateB, thenA, then

linkX to �(X) and cut them loose from (A+B+

C):

A+B+C+ �(X); X+ �(X) (3)

Now, if we choose X to be (A+B+C), then the

end result is:

A+B+C+ �(A+B+C);

A+B+C+ �(A+B+C) (4)

This complete machine plus tape, [A+B+C+

�(A +B+C)], is therefore self-reproducing. From the

point of view of the evolvability of this architecture, the

crucial feature is that we can add the description of an

arbitrary additional automaton D to the input tape. This

gives us:

A+B+C+ �(A +B+C+D);

A+B+C+D+ �(A+B+C+D) (5)

Furthermore, notice that if the input tape �(A +B+

C+D) is mutated in such a way that the description of

automaton D is changed, but that of A, B and C are

unaffected—that is, the mutated tape is �(A+B+C+

D

0

)—then the result of the construction will be:

A+B+C+D+ �(A+B+C+D)

mutation

;

A+B+C+D

0

+ �(A+B+C+D

0

) (6)

The reproductive capability of the architecture is there-

fore robust to some mutations (specifically, those muta-

tions which only affect the description of D), so the ma-

chines are able to evolve. Von Neumann pointed out that

it was the action of the general copying automaton, B,

which gave his architecture the capacity for evolving ma-

chines of increased complexity, becauseB is able to copy

the description of any machine, no matter how complic-

ated (von Neumann, 1966, p.121). This ability is clearly

demonstrated in Equation 5 above.

The original implementation envisaged by von Neu-

mann was a constructive system, which Burks has re-

ferred to both as the ‘robot model’ and as the ‘kinematic

model’ (Aspray and Burks, 1987, p.374). However, von

Neumann decided that the system was too complicated to

capture in a set of rules that were both simple and enlight-

ening, so he turned his attention to developing the cellu-

lar automata (CA) framework with Stanislaw Ulam. Von

Neumann described the detailed design of a self-repro-

ducing machine in a cellular automata space, according

to the architecture described above.

3.2 Implicit versus Explicit Encoding

Many of the artificial evolutionary systems mentioned in

Section 2 can be analysed in terms of von Neumann’s

work. In this section I analyse some of them in terms of

the various components of his architecture. Specifically,

I consider the extent to which these components are ex-

plicitly encoded on the evolving individuals themselves,

rather than being implicitly encoded in the ‘laws of phys-

ics’ of the environment in which they exist (i.e. the operat-

ing system of the platform). Now, as we are interested in

the evolution of the self-reproducing individuals in these

systems, and as the inheritable information of each indi-

vidual (i.e. the part which gets passed on from parent to

offspring) is contained on the tape �, I will assume that

the tape must be explicitly represented in some fashion,

otherwise there would be nothing which could evolve. We

can now ask which parts of the [A+B+C+ D] archi-

tecture are explicitly encoded on the tape �. Of course,

even the behaviour of those parts which are represented

on the tape will still to some extent be encoded in the

‘laws of physics’ of the environment, but I think the ana-

lysis is nevertheless worthwhile.

In the case of von Neumann’s self-reproducing cellu-

lar automata, it is clear that all four subcomponents (i.e.

A, B, C and D) are very explicitly encoded on the tape

�(A +B+C+D); the environment in which the auto-

maton exists implicitly encodes only very low-level ac-

tions in the form of the local transition rules of individual

cells.

The reproducing programs in Tierra (Ray, 1991) and

similar systems can also be analysed in terms of von Neu-

mann’s architecture. At first sight it might seem that there

is no separate genetic description of the program in a sys-

tem such as Tierra. The picture is complicated by the fact

that the machinery which interprets the program (i.e. auto-

matonA) does not reside in the same part of the computer

in which the program itself is stored. The state informa-

tion for this machinery—a program’s ‘virtual CPU’ (i.e.

the instruction pointer, stacks, registers, etc.)—is gener-

ally represented in an independent area of memory to the

program’s instructions. Furthermore, the actual ‘inter-

preting machinery’ of the virtual CPU is encoded in the

global operating system provided by the platform, and is

in this sense implicit in the program’s environment. Ad-

ditionally, the control automatonC, which controls when

the instructions in the program are executed, is also im-

plicit in the part of the operating system which governs

mechanisms such as how a program’s instruction pointer



is updated after the execution of each instruction. All that

is left to be explicitly encoded by the program, therefore,

is the copying automatonB, and potentially any other ar-

bitrary automatonD.

Now, the instructions which make up the program ex-

ist in an unreactive state in the system’s random-access

memory. It is only when the control automaton C trans-

fers instructions to the interpreting automatonA that they

become ‘active’. Looked at in this way, we can see that it

is the behaviour of the program (including looping, jump-

ing around the code, etc.) that is the result of automaton

A interpreting the unreactive genetic description. This

behaviour, or computation, is therefore the equivalent to

the constructed machine, or phenotype, in von Neumann’s

design.3 The string of instructions residing in the random-

access memory (which is normally referred to as the pro-

gram) can now been seen as nothing more than the tape

or genetic description of this phenotype.

A self-reproducing program in a Tierra-like system

is therefore consistent with von Neumann’s architecture.

However, as automataA andC are largely implicit in the

environment in which the programs reside (the only ex-

plicit representation being the state information in a pro-

gram’s virtual CPU), and are certainly not encoded by the

individual programs, we can see that the ‘program’, in the

sense of a string of instructions in the system’s random-

access memory, corresponds to the tape �(B+D) in von

Neumann’s scheme. Notice that with this design the ‘ge-

netic code’ which maps the genotype �(B+D) to the

phenotype [B+D] cannot itself evolve, because the in-

terpretation automatonA is not encoded on the tape.

It is interesting to speculate on what information we

might desire to be explicitly encoded on a structure which

would be suitable for acting as a robust initial seed for an

open-ended, and possibly creative, evolutionary process.

I will refer to such a structure as ‘proto-DNA’. Now, we

would like our proto-DNA to be an indefinite hereditary

replicator if it is to be such a seed (Maynard Smith and

Szathmáry, 1995). In other words, it should be able to ex-

ist in an unlimited number of configurations which retain

the ability to reproduce. If the copying process is encoded

on the tape itself, then mutations have the potential to dis-

rupt its ability to be reproduced. It would therefore seem

desirable that the copying automatonB of our proto-DNA

be largely implicitly encoded in the environment. Note

that this would not necessarily prevent a more complic-

ated, and possibly more reliable, explicit copying process

B

0 later evolving from (but still based upon) the simpler

implicit process, as indeed seems to have happened dur-

ing biological evolution.

If the copying procedure for our proto-DNA is impli-

citly encoded in the environment, however, any configur-

ation of proto-DNA would, all else being equal, be able

to reproduce as well as any other. In other words, there

3Indeed, for organisms in any kind of evolving system, the notion of

a phenotype fundamentally involves behaviour, in the form of interac-

tion with the (biotic and abiotic) environment.

would be no basis for preferentially selecting some con-

figurations over others, and therefore no basis for an evol-

utionary process. Specific configurations of proto-DNA

must therefore have some specific properties that are se-

lectively significant. Models of the origin of life com-

monly presume that these simple phenotypic properties

were things such as increased stability of the molecule,

simple control of the local environment, catalytic activ-

ity, etc. (e.g. Eigen and Schuster (1977), Cairns-Smith

(1985), Szathmáry and Demeter (1987)).

At the initial stages of an evolutionary process, how-

ever, we would not expect there to be mechanisms for

explicitly decoding the proto-DNA; in other words, the

interpretation machinery A is implicit. This means that

particular configurations of proto-DNA should have some

specific phenotypic properties (such as the ability to act

as catalysts) which can be determined directly from their

structure rather than having to be explicitly decoded from

the genotype. We could therefore regard the proto-DNA

as merely �(D), meaning that particular configurations

have particular phenotypes associated with them, which

are (a) not related to the process of self-reproduction per

se, and (b) do not require to be decoded by an expli-

cit interpretation automaton A. Regarding the kinds of

simple phenotypes that we might wish to be available to

our proto-DNA, some possibilities are suggested by the

origin-of-life models mentioned previously, but in gen-

eral the options seem endless. Graham Cairns-Smith ob-

serves:

“It is almost too easy to imagine possible

uses for phenotype structures—because the

specification for an effective phenotype is so

sloppy. A phenotype has to make life easier

or less dangerous for the genes that (in part)

brought it into existence. There are no rules

laid down as to how this should be done.”

Cairns-Smith (1985) (p.106).

If more complicated phenotypes are to arise later on in the

evolutionary process, however, we require that the proto-

DNA at least has the potential for explicit interpretation

machineryA0 and control machineryC0 to become asso-

ciated with it. This would involve some form of specific

reaction to subsections of information in the proto-DNA,

but more work is needed to fully identify how this poten-

tial for explicit interpretation might be assured.

3.3 Ability to perform other tasks

In the previous section it was suggested that proto-DNA

in its primitive form should not involve much interpreta-

tion or control machinery. However, it is important that

some specific phenotypic properties are implicitly asso-

ciated with specific structures (i.e. these properties are

apparent without the need for explicit interpretation ma-

chinery). Furthermore, it was suggested in the previous

section that the proto-DNA should also have the potential



to be explicitly interpreted. Without the ability of indi-

vidual replicators to have other properties as well as self-

reproduction, the evolving system will not be very inter-

esting. Indeed Muller, who, in the early part of this cen-

tury was the first person to explicitly propose an exclus-

ively evolutionary definition of life, emphasised the im-

portance of this material “affecting other materials and,

therewith, its own success in genetic survival” (Muller,

1966, p.512).

To digress a little, with regard to the issue of how sym-

bolic information arises in evolution (discussed, for ex-

ample, by Pattee (1995b)), this requirement ensures that

the matter-symbol relationship is inherent in the system

from the beginning. The material is selected for its phen-

otypic properties, but it is its genetic information which

is passed on to its offspring. In this situation, it is neces-

sary to assume that by inheriting this genotype, the off-

spring will also share the phenotypic properties. For ex-

ample, in a simple RNA-world scenario,4 we could ima-

gine that molecules which inherit a particular sequence of

bases would adopt a particular three-dimensional struc-

ture, which might, say, confer specific catalytic properties

(as demonstrated by Zaug and Cech (1986)). We could

therefore regard the genetic information (the sequence of

bases on the RNA molecule) as a symbolic representa-

tion of its phenotypic properties (its catalytic action in

this example). However, the question of how explicit in-

terpretation machinery evolves is more complicated (as

mentioned in the previous section).

Nils Barricelli was well aware of the need for repro-

ducers to perform other tasks when he designed his arti-

ficial life platform in the early 1950s. He says “It may

appear that the properties one would have to assign to a

population of self-reproducing elements in order to ob-

tain Darwinian evolution are of a spectacular simplicity.

The elements would only have to: (1) Be self-reproducing

and (2) Undergo hereditary changes (mutations) in order

to permit evolution by a process based on the survival of

the fittest” (Barricelli, 1962, pp.70–71). He goes on to

describe a simple discrete one-dimensional model where

each cell is either empty or contains an integer number.

The numbers reproduce according to the implicit rules

of the system (‘trivial reproduction’ in the common use

of the phrase), and mutations arise under certain circum-

stances. This simple model therefore fulfils the funda-

mental requirements for an evolutionary process. How-

ever, as Barricelli notes, this model of evolution “clearly

shows that something more is needed to understand the

formation of organs and properties with a complexity com-

parable to those of living organisms. No matter how many

mutations occur, the numbers . . . will never become any-

thing more complex than plain numbers” (ibid. p.73).

Barricelli therefore concentrated on looking for the ‘miss-

ing ingredient’.5 It should be noted that von Neumann,

4For references to work on RNA worlds, see Nuño et al. (1995) and

Lazcano (1995).
5His solution was to require that elements could only reproduce in

also, was not so much interested in machines which could

only self-reproduce, but rather in machines which could

perform other tasks as well (von Neumann (1966) p.92;

see also McMullin (1992) pp.174–175).

The preceding arguments are leading us in the direc-

tion of requiring a form of proto-DNA which reproduces

due to the implicit laws of the environment in which it

exists, but which also explicitly specifies some properties

which can be selected for or against in an evolutionary

process. At this point we might note that artificial evolu-

tionary systems which have just these properties already

exist, and indeed their use is widespread; these are the op-

timisation tools mentioned in Section 2, such as genetic

algorithms (e.g. Holland (1975), Goldberg (1989)), ge-

netic programming (e.g. Koza (1992)) and similar tech-

niques. The difference is that we require a system with

the potential for a large degree of intrinsic adaptation for

open-ended evolution, rather than a system where the se-

lection of individuals is determined by an externally-

defined fitness function (see Section 2). Intrinsic adapt-

ation is introduced when the domain of interaction of the

individuals is within the evolving system itself, and the in-

dividuals are competing for limited resources. This is in

contrast to systems with an explicitly defined fitness func-

tion, where the replicators do not directly interact with

other replicators.

Similar arguments for proto-DNA with the properties

of implicit reproduction and the potential for explicitly-

encoded attributes with selective significance have been

put forward by Barry McMullin, who points out the con-

nection with Cairns-Smith (1985)’s general model for the

original of terrestrial life based upon inorganic informa-

tion carriers (McMullin, 1992, p.267).

3.4 Embeddedness in the Arena of Compet-

ition and Richness of Interactions

In the preceding sections I have emphasised the import-

ance of the distinction between intrinsic and extrinsic se-

lection. I will now discuss some issues involved in this

distinction in more detail.

An essential requirement for an evolutionary process

is that some form of selection mechanism exists, so that

some variations of the reproducing entities are favoured

over others. The selection mechanism therefore intro-

duces a form of competition between the individual repro-

ducers; they become engaged in a struggle for existence.

The presence of such a mechanism implies that, in some

form, the individuals coexist in an arena of limited capa-

city, and that they are competing with their neighbours

(either globally or locally) for the right to be there.

An evolutionary system must therefore have an arena

of competition of some description, although there are

few restrictions on the particular form it should take. All

symbiotic association with other elements. While this may indeed be

an important aspect of the ‘missing ingredient’, it is extremely doubtful

that it is the only important aspect.



that is required is that it introduces the concept of a re-

source that is: (a) a vital commodity to individuals in the

population; (b) of limited availability; and (c) that indi-

viduals can compete for (at either a global or local level).

This resource can usually be interpreted as energy, space,

matter, or a combination of these.

An issue that arises when considering different evolu-

tionary systems is the extent to which individuals are em-

bedded in this arena of competition. In von Neumann’s

cellular automata design, individuals are fully embedded—

there is no ‘hidden’ state information (i.e. information

which is not embedded in the cellular space itself). If

one believes in materialism, the same can be said of the

biosphere. At the other extreme, individuals in a genetic

algorithm (GA) have minimal embeddedness—the arena

of competition merely contains place holders for the chro-

mosomes, and the restriction is generally on the number

of individuals, regardless of their size (although most GAs

have constant-size chromosomes anyway). These two ex-

tremes, together with intermediate situations arising in

Cosmos6 and Tierra, are depicted in Figure 1. Note that

individuals in Cosmos are not really embedded in the arena

of competition at all; the two-dimensional environment

only holds pointers to the cells, in much the same way as

in a GA.7 In Tierra, a program’s instructions are embed-

ded in the arena, although each program still has some

additional state information.

It should be emphasised that this notion of embedded-

ness is unrelated to the distinction between implicit and

explicit encoding, which concerns the degree to which a

process is governed by the environment as opposed to a

specific object situated within that environment. The is-

sue of embeddedness concerns the representation of indi-

viduals only; it does not (directly) concern the represent-

ation of the abiotic environment.

Related to the issue of physical embeddedness is that

of how restricted is the range of interactions that are al-

lowed between objects within the arena. In a standard

GA, no direct interactions are allowed between chromo-

somes at all; the continued existence of an individual is

decided by the extrinsically-defined selection mechanism.

In Cosmos, programs cannot directly interact with their

neighbours, but they can exchange messages and energy

tokens via the local environment. Although programs in

Tierra are embedded in the arena of competition to a much

greater extent than they are in Cosmos, the range of inter-

actions allowed with neighbouring programs is still fairly

restricted; programs can read the code of their neighbours,

but they cannot directly write to neighbouring memory

addresses. In contrast, von Neumann’s cellular automata

implementation is far less restrictive; the transition rules

6Cosmos is an artificial life platform written by the author (Taylor,

1997). The general design was influenced by Tierra, but there are some

fairly significant differences between the two systems. One difference,

which it shares with Avida (Adami and Brown, 1994), is that individuals

occupy positions in a two-dimensional environment.
7The same applies to similar artificial life platforms with two-

dimensional environments, such as Avida (Adami and Brown, 1994).
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Figure 1: Embeddedness of Individuals and Richness of

Interactions in Various Artificial Evolutionary Platforms.

of the cellular automata define neighbourhood interac-

tions which occur at the level of individual cells and which

therefore do not respect boundaries between individual

organisms.

From the point of view of the evolvability of individu-

als, the more embedded they are, and the less restricted

the interactions are, then the more potential there is for the

very structure of the individual to be modified. Sections

of the individual which are not embedded in the arena

of competition are ‘hard-wired’ and likely to remain un-

changed unless specific mechanisms are included to allow

them to change (and the very fact that specific mechan-

isms are required suggests that they would still only be

able to change in certain restricted ways).

Additionally, from an epistemological point of view,

Pattee (1995b) points out that symbolic information (such



as that contained in an organism’s genes) has “no intrinsic

meaning outside the context of an entire symbol system as

well as the material organization that constructs (writes)

and interprets (reads) the symbol for a specific function,

such a classification, control, construction, communica-

tion . . . ”. He argues that a necessary condition for an

organism to be capable of creative open-ended evolution

is that it encapsulates this entire self-referent organisa-

tion (Pattee refers to this condition as semantic closure).

From this it follows that organisms should be construc-

ted “with the parts and the laws of an artificial physical

world” Pattee (1995a) (p.36).8 In other words, the inter-

pretation (phenotype) of the symbolic information (geno-

type) of an artificial organism should be constructed and

act within the artificial physical environment of the sys-

tem. Additionally, if the system is to model the origin of

genetic information, then the genotype itself must also be

embedded within the environment; that is, the complete

semantically-closed organisation—the entire organism—

must be completely embedded within the physical envir-

onment.

To end this section, I briefly mention Holland (1995)’s

work with the ‘Echo’ model of complex adaptive systems.

Echo possesses many of the features that I have just ar-

gued are desirable for a model of open-ended evolution.

For example: selection in determined intrinsically by in-

teractions between Echo organisms (or to use Holland’s

terminology, agents), rather than by an externally-defined

fitness function; the process by which agents reproduce

is implicitly defined in the Echo operating system rather

than being explicitly encoded by individual agents; and

the agents are able to perform a variety of phenotypic be-

haviours; Echo is also designed upon more explicit design

considerations than were most earlier artificial life mod-

els; the considerations for Echo are based upon a core set

of principles which Holland believes are common to all

complex adaptive systems. For all these reasons, I be-

lieve Echo represents a significant advance. However, the

structure of the individual agents—the notion of what it is

to be an agent—is still predefined, and the representation

of agents is not fully embedded in the arena of competi-

tion. Additionally, the interpretation of agent’s chromo-

somes is handled implicitly by the operating system. The

fact that the Echo operating system implicitly interprets

the agents’ chromosomes means that they can never come

to encode anything more than the fixed range of actions

(e.g. offence, defence, conditional exchange of resources)

predefined by the designer. In Hidden Order, Holland

discusses how new meaning can arise in a system, but ac-

knowledges that Echo is deficient in this respect (Holland,

1995, p.138). As Pattee has suggested (see Section 3.4), it

is only when an organism’s genotype, phenotype, and the

interpretation machinery that produces the latter from the

former, are all embedded in the arena of competition that

8Although he also stresses that “some epistemic principles must re-

strict physics-as-it-could-be if it is to be any more than computer games”

(Pattee, 1995a).

fundamentally new symbolic information can arise in the

genome (thereby permitting truly open-ended evolution).

In the discussion of the desirable properties of proto-DNA

in Section 3.2, it was suggested that this too would ini-

tially be interpreted implicitly. It was, however, stressed

that the potential should exist for explicit interpretation

machinery to evolve (although how this potential might

be assured is an open question).

4 A Full Specification for an Open-

Endeded Evolutionary Process

Perhaps the most important point to arise from the preced-

ing discussion is that processes such as self-reproduction

operate within an environment rather than in isolation.

The properties of this environment, and the ways in which

evolving entities may interact with it (and with each other),

fundamentally influence the evolutionary process.

Reflecting upon the significance of his work on evol-

ution, and in particular on his demonstration of the pos-

sibility of machines which could build modified copies of

themselves, von Neumann said “It is clear that this is a

step in the right direction, but it is also clear that it re-

quires considerable additional analyses and elaborations

to become really relevant” (von Neumann, 1966, p.131).

It has long been recognised that chief among these

additional analyses and elaborations is the incorporation

of the evolutionary process into a broader framework that

also considers the properties of the environment. Holland

has emphasised that the study of adaptation “involves the

study of both the adaptive systems and its environment. In

general terms, it is a study of how systems can generate

procedures enabling them to adjust efficiently to their en-

vironments” (Holland, 1962, p.299). Moreover, Conrad

(1988) stresses that “the characterization of the substrate

is of such immense importance for the effectiveness of

evolution” (p.304).

Studies of evolution in vitro, such as Orgel (1979)’s

experiments with evolving RNA sequences using the viral

enzyme Q� replicase, have also demonstrated the need

for a better theoretical understanding of these issues.

Maynard Smith explains:

“More or less independently of the start-

ing point . . . the end point is a rather small

molecule, some 200 bases long, with a par-

ticular sequence and structure that enable it

to be replicated particularly rapidly. In this

simple and well-defined system, natural se-

lection does not lead to continuing change,

still less to anything that could be recognized

as an increase in complexity: it leads to a

stable and rather simple end point. This raises

the following simple, and I think unanswered,

question: What features must be present in a

system if it is to lead to indefinitely continu-



ing evolutionary change?” (Maynard Smith,

1988, p.221).

The question raised by Maynard Smith is exactly the

one of interest in this paper: What sort of system (in terms

of individuals, interactions and environments) will give

rise to an open-ended, and possibly creative, evolutionary

process?

4.1 Waddington’s Paradigm for an Evolu-

tionary Process

A characterisation of a process which might be capable of

supporting open-ended evolution was proposed by C.H.

Waddington 30 years ago (Waddington, 1969). He went

as far as to call this characterisation a new paradigm un-

der which biological evolution should be studied. This

paradigm is of particular interest because it provides a

general characterisation of the individuals involved, of

how they interact, and of the kind of environment in which

they reside. To my knowledge, little work has been de-

voted to exploring Waddington’s proposal, probably be-

cause of the difficulties in capturing it fully with an ana-

lytical model (the traditional approach of theoretical bio-

logy). However, it is formulated in a way which makes it

particularly amenable to synthetic (artificial life) model-

ling, and is therefore an ideal starting place for developing

a better theoretical understanding of open-ended evolu-

tion within an artificial life framework.

Waddington describes a replicator as “a material struc-

ture P with a characteristic Q such that the presence of

P with Q produces Q in a range of materials P
i

under

circumstances E
j

” (ibid. p.115). The overall scenario is

summarised as follows:

“The complete paradigm must therefore

include the following items: A genetic sys-

tem whose items (Qs) are not mere inform-

ation, but are algorithms or programs which

produce phenotypes (Q�s). There must be a

mechanism for producing an indefinite vari-

ety of new Q

0�s, some of which must act in

a radical way which can be described as ‘re-

writing the program’. There must also be an

indefinite number of environments, and this

is assured by the fact that the evolving phen-

otypes are components of environments for

their own or other species. Further, some at

least of the species in the evolving biosystem

must have means of dispersal, passive or act-

ive, which will bring them into contact with

the new environments (under these circum-

stances, other species may have the new en-

vironments brought to them). These environ-

ments will not only exert selective pressure

on the phenotypes, but will also act as items

in programs, modifying the epigenetic pro-

cesses with which theQs become worked out

into [Q�s].” Waddington (1969) (p.120).9

This general characterisation raises some important

issues. For example, the requirement that Qs act not only

as information but also as algorithms—that they must act

as operators as well as operands—locates the relation-

ship between genotype and phenotype at the very heart

of the paradigm. (The same requirement was sugges-

ted for proto-DNA, in Section 3.3.) Waddington points

out that the open-ended nature of his model relies on the

fulfillment of two conditions: (1) that E
j

is an infinite-

numbered set; and (2) that there are sufficient Qs to

provideQ�s suitable for an infinite sub-set of E
j

s.

The first condition is satisfied by the fact that Q�s are

components of E
j

s. A vital direction for future research

is the investigation of the different sorts of ways in which

Q

�s could be components of E
j

s, and the evolutionary

consequences of such choices.

Of the other condition, Waddington says that “the

second requirement, that the available genotypes must be

capable of producing phenotypes which can exploit the

new environments, requires some special provision of a

means of creating genetic variation . . . It is important to

emphasize that the new genetic variation must not only

be novel, but must include variations which make pos-

sible the exploration of environments which the popula-

tion previously did not utilize . . . It is not sufficient to

produce new mutations which merely insert new paramet-

ers into existing programmes; they must actually be able

to rewrite the programme” (ibid. pp.116–118).

Another important direction for future research is to

explore how this second condition can be satisfied. Provid-

ing the Qs with access to sufficient processes to ensure

(something close to) universal construction will undoubt-

edly be part of the solution. This does not necessarily

mean that each Q� has to be a universal constructor, but

they should at least have access to a basic set of opera-

tions to give the set of all Qs the ability to construct a

sufficient set of Q�s. This task may be related to the abil-

ity to perform universal computation, which depends on

the combination and conditional iteration of a simple set

of operations (e.g. Gandy, 1988), although the spatial as-

pect of construction is an extra complication.

It is worth mentioning that some existing artificial evol-

utionary systems, such as Barricelli (1963)’s studies with

evolving game strategies, Conrad and Pattee (1970)’s

model, and Holland’s �-Universes (Holland, 1976), do

have the notion of emergent operators (phenotypes). How-

ever, these phenotypes generally have a limited range of

action, thereby preventing the systems from engaging in

truly open-ended evolutionary processes.

Returning to Waddington’s paradigm, notice that his

second condition for open-ended evolution is more subtle

than that of universal construction alone. A full analysis

9In the original paper, the final word of this paragraph appears as

Q

0s rather then Q�s. This is fairly clearly a typographical error.



of this condition would also involve the question of how

phenotypes which are, in some sense, fundamentally new

may be introduced into the population to take advantage

of new environments. This question is related to the dis-

tinction between creativity and open-ended evolution, dis-

cussed in Section 2.

Now, the requirement in systems capable of open-

ended evolution that individual reproducers have select-

ively significant phenotypic properties, on top of the abil-

ity to reproduce, has already been discussed (see Sec-

tion 3.3). However, it may turn out that the fulfillment

of Waddington’s second condition would require reprodu-

cing structures to possess not just one, but multiple pheno-

typic properties, possibly of different functional modalit-

ies (e.g. catalysis, light sensitivity, motility, etc.).

Maynard Smith has observed that “it seems to be a general

feature of evolution that new functions are performed by

organs which arise, not de novo, but as modifications of

pre-existing organs” (Maynard Smith, 1986, p.46). This

principle could potentially solve the problem raised by

Waddington and Pattee, of how new measuring devices

(or fundamentally new phenotypes) arise during evolu-

tion: a structure with multiple properties might originally

be selected for one of these properties, but it might later

turn out (quite accidentally) that some of its other proper-

ties also confer (unrelated) adaptive advantages upon the

bearer of that structure. In such a scenario, an organism

which duplicated this structure might have an adaptive ad-

vantage over those possessing a single copy, because each

structure could be optimised for a single property. In this

way, the organism can acquire fundamentally new pheno-

typic properties. This perspective may bring some light to

bear upon the evolution of fundamental innovations, but it

also opens up a whole range of new problems relating to

the modelling of multiple, and mostly (initially at least)

irrelevant, properties of objects. Such questions require

much more investigation, but existing work reported in

the biological literature on multifunctional enzymes may

be helpful (e.g. Kacser and Beeby, 1984).

5 Summary

In this paper I have discussed the concept of open-ended

evolution, and the introduction of fundamental novelty

during evolution (i.e. creative evolution). Creativity is

more subtle than open-ended evolution, and involves is-

sues such as the emergence of symbolic information, and

the evolution of new measuring instruments. I have ana-

lysed some existing artificial evolutionary platforms in

terms of their ability to support open-ended and creat-

ive evolutionary processes. The discussion emphasises

that existing models have generally concentrated on the

representation of individuals, and that explicit theoretical

considerations concerning the design of the environment

(including spatial structure, the issue of how individuals

form part of the environment experienced by others, and

the degree of implicit versus explicit encoding of pro-

cesses), and of the sorts of interactions allowed between

individuals and their environment, have often been lack-

ing. I have also discussed the desirable properties of proto-

DNA—a hypothetical structure which might be suitable

to act as a seed for an open-ended, and creative, evol-

utionary process. I suggested that the capacity of this

proto-DNA to reproduce should not be easily disrupted

by mutations, and therefore that the reproduction process

should be implicitly encoded in the environment rather

than explicitly encoded on individuals. This led to a dis-

cussion of the sorts of phenotypic properties that should

be associated with specific proto-DNA structures, on top

of their ability to reproduce. In addition, the environment

in which the proto-DNA exists should allow unrestricted

interactions between individuals, and the representation

of individuals should be fully embedded within the arena

of competition of the system, so as not to limit the struc-

ture’s evolutionary potential. Throughout the paper I have

highlighted various open questions relating to these issues

which need to be addressed by future research. In Sec-

tion 4 I described a paradigm suggested by Waddington,

which might represent a suitable starting place for a more

unified and productive exploration of these issues using

synthetic (artificial life) modelling techniques.
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